|
|
@@ -0,0 +1,234 @@ |
|
|
|
#ifndef DMAChannel_h_ |
|
|
|
#define DMAChannel_h_ |
|
|
|
|
|
|
|
#include "mk20dx128.h" |
|
|
|
|
|
|
|
// This code is a work-in-progress. It's incomplete and not usable yet... |
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
|
|
class DMAChannel { |
|
|
|
typedef struct __attribute__((packed)) { |
|
|
|
volatile const void * volatile SADDR; |
|
|
|
int16_t SOFF; |
|
|
|
union { uint16_t ATTR; struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; }; |
|
|
|
uint32_t NBYTES; |
|
|
|
int32_t SLAST; |
|
|
|
volatile void * volatile DADDR; |
|
|
|
int16_t DOFF; |
|
|
|
volatile uint16_t CITER; |
|
|
|
int32_t DLASTSGA; |
|
|
|
volatile uint16_t CSR; |
|
|
|
volatile uint16_t BITER; |
|
|
|
} TCD_t; |
|
|
|
public: |
|
|
|
// Constructor - allocates which DMA channel each object actually uses |
|
|
|
DMAChannel(uint8_t channelRequest=0); |
|
|
|
|
|
|
|
// Triggers cause the DMA channel to actually move data. |
|
|
|
// |
|
|
|
// Use a hardware trigger to make the DMA channel run |
|
|
|
void attachTrigger(uint8_t source) { |
|
|
|
volatile uint8_t *mux; |
|
|
|
mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel; |
|
|
|
*mux = 0; |
|
|
|
*mux = source | DMAMUX_ENABLE; |
|
|
|
} |
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger every time it triggers. This |
|
|
|
// effectively makes the 2 channels run in parallel. |
|
|
|
void attachTrigger(DMAChannel &channel) { |
|
|
|
|
|
|
|
} |
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger when it completes. |
|
|
|
void attachTriggerOnCompletion(DMAChannel &channel) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// An interrupt routine can be run when the DMA channel completes |
|
|
|
// the entire transfer. |
|
|
|
void attachInterrupt(void (*isr)(void)) { |
|
|
|
_VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
} |
|
|
|
|
|
|
|
// Use a single variable as the data source. Typically a register |
|
|
|
// for receiving data from one of the hardware peripherals is used. |
|
|
|
void source(const signed char &p) { src(&p, 1); } |
|
|
|
void source(const unsigned char &p) { src(&p, 1); } |
|
|
|
void source(const signed short &p) { src(&p, 2); } |
|
|
|
void source(const unsigned short &p) { src(&p, 2); } |
|
|
|
void source(const signed int &p) { src(&p, 4); } |
|
|
|
void source(const unsigned int &p) { src(&p, 4); } |
|
|
|
void source(const signed long &p) { src(&p, 4); } |
|
|
|
void source(const unsigned long &p) { src(&p, 4); } |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data source. Typically a |
|
|
|
// buffer for transmitting data is used. |
|
|
|
void sourceBuffer(const signed char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void sourceBuffer(const unsigned char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void sourceBuffer(const signed short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void sourceBuffer(const unsigned short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void sourceBuffer(const signed int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const unsigned int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const signed long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const unsigned long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
|
|
|
|
// Use a circular buffer as the data source |
|
|
|
void sourceCircular(const signed char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void sourceCircular(const unsigned char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void sourceCircular(const signed short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void sourceCircular(const unsigned short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void sourceCircular(const signed int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const unsigned int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const signed long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const unsigned long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
|
|
|
|
|
|
|
|
// Use a single variable as the data destination. Typically a register |
|
|
|
// for transmitting data to one of the hardware peripherals is used. |
|
|
|
void destination(signed char &p) { src(&p, 1); } |
|
|
|
void destination(unsigned char &p) { src(&p, 1); } |
|
|
|
void destination(signed short &p) { src(&p, 2); } |
|
|
|
void destination(unsigned short &p) { src(&p, 2); } |
|
|
|
void destination(signed int &p) { src(&p, 4); } |
|
|
|
void destination(unsigned int &p) { src(&p, 4); } |
|
|
|
void destination(signed long &p) { src(&p, 4); } |
|
|
|
void destination(unsigned long &p) { src(&p, 4); } |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data destination. Typically a |
|
|
|
// buffer for receiving data is used. |
|
|
|
void destinationBuffer(signed char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void destinationBuffer(unsigned char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void destinationBuffer(signed short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void destinationBuffer(unsigned short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void destinationBuffer(signed int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(unsigned int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(signed long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(unsigned long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
|
|
|
|
// Use a circular buffer as the data destination |
|
|
|
void destinationCircular(signed char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void destinationCircular(unsigned char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void destinationCircular(signed short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void destinationCircular(unsigned short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void destinationCircular(signed int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(unsigned int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(signed long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(unsigned long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
|
|
|
|
// TODO: explicit function for configuring transfer length.... |
|
|
|
// should we try to automatically pick it up from the array lengths? |
|
|
|
|
|
|
|
// TODO: functions to configure major/minor loop |
|
|
|
// option #1 - trigger moves 1 byte/word (minor=1, major=count) |
|
|
|
// option #2 - trigger moves all data (minor=count, major=1) |
|
|
|
// option ?? - more complex config, write TCD manually.... |
|
|
|
|
|
|
|
// TODO: functions to set other options, functions to enable |
|
|
|
// manual start function, etc |
|
|
|
|
|
|
|
// TODO: "get" functions, to read important stuff, like SADDR & DADDR... |
|
|
|
|
|
|
|
// For complex and unusual configurations not possible with the above |
|
|
|
// functions, the Transfer Control Descriptor (TCD) and channel number |
|
|
|
// can be used directly. This leads to less portable and less readable |
|
|
|
// code, but direct control of all parameters is possible. |
|
|
|
TCD_t &TCD; |
|
|
|
uint8_t channel; |
|
|
|
|
|
|
|
protected: |
|
|
|
void src(const void *p, uint32_t size) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = 0; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.SLAST = 0; |
|
|
|
} |
|
|
|
void src(const void *p, uint32_t size, uint32_t len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.SLAST = -len; |
|
|
|
} |
|
|
|
void srcc(const void *p, uint32_t size, uint32_t len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0 | ((31 - __builtin_clz(len)) << 3); // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1 | ((31 - __builtin_clz(len)) << 3); // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2 | ((31 - __builtin_clz(len)) << 3); // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.SLAST = 0; |
|
|
|
} |
|
|
|
|
|
|
|
void dst(void *p, uint32_t size) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = 0; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
void dst(void *p, uint32_t size, uint32_t len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_DST = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_DST = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_DST = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.DLASTSGA = -len; |
|
|
|
} |
|
|
|
void dstc(void *p, uint32_t size, uint32_t len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_DST = 0 | ((31 - __builtin_clz(len)) << 3); // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_DST = 1 | ((31 - __builtin_clz(len)) << 3); // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_DST = 2 | ((31 - __builtin_clz(len)) << 3); // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
extern "C" { |
|
|
|
#endif |
|
|
|
extern uint16_t dma_channel_allocated_mask; |
|
|
|
#ifdef __cplusplus |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif |