Преглед изворни кода

Implement set_arm_clock

teensy4-core
PaulStoffregen пре 6 година
родитељ
комит
c93cf0f039
4 измењених фајлова са 231 додато и 64 уклоњено
  1. +169
    -0
      teensy4/clockspeed.c
  2. +1
    -1
      teensy4/debug/printf.h
  3. +51
    -6
      teensy4/imxrt.h
  4. +10
    -57
      teensy4/startup.c

+ 169
- 0
teensy4/clockspeed.c Прегледај датотеку

@@ -1,5 +1,174 @@
#include <stdint.h>
#include "imxrt.h"
#include "wiring.h"
#include "debug/printf.h"

volatile uint32_t F_CPU_ACTUAL = 396000000;
volatile uint32_t F_BUS_ACTUAL = 132000000;

// Define these to increase the voltage when attempting overclocking
// The frequency step is how quickly to increase voltage per frequency
// The datasheet says 1300 is the absolute maximum voltage. The hardware
// can actually create up to 1575, but going over 1300 risks damage!
#define OVERCLOCK_STEPSIZE 28000000
#define OVERCLOCK_MAX_VOLT 1300
//#define OVERCLOCK_MAX_VOLT 1575 // Danger Will Robinson!


uint32_t set_arm_clock(uint32_t frequency);


// stuff needing wait handshake:
// CCM_CACRR ARM_PODF
// CCM_CBCDR PERIPH_CLK_SEL
// CCM_CBCMR PERIPH2_CLK_SEL
// CCM_CBCDR AHB_PODF
// CCM_CBCDR SEMC_PODF

uint32_t set_arm_clock(uint32_t frequency)
{
uint32_t cbcdr = CCM_CBCDR; // pg 1021
uint32_t cbcmr = CCM_CBCMR; // pg 1023
uint32_t dcdc = DCDC_REG3;

// compute required voltage
uint32_t voltage = 1150; // default = 1.15V
if (frequency > 528000000) {
voltage = 1250; // 1.25V
#if defined(OVERCLOCK_STEPSIZE) && defined(OVERCLOCK_MAX_VOLT)
if (frequency > 600000000) {
voltage += ((frequency - 600000000) / OVERCLOCK_STEPSIZE) * 25;
if (voltage > OVERCLOCK_MAX_VOLT) voltage = OVERCLOCK_MAX_VOLT;
}
#endif
} else if (frequency <= 24) {
voltage = 950; // 0.95
}

// if voltage needs to increase, do it before switch clock speed
CCM_CCGR6 |= CCM_CCGR6_DCDC(CCM_CCGR_ON);
if ((dcdc & DCDC_REG3_TRG_MASK) < DCDC_REG3_TRG((voltage - 800) / 25)) {
printf("Increasing voltage to %u mV\n", voltage);
dcdc &= ~DCDC_REG3_TRG_MASK;
dcdc |= DCDC_REG3_TRG((voltage - 800) / 25);
DCDC_REG3 = dcdc;
while (!(DCDC_REG0 & DCDC_REG0_STS_DC_OK)) ; // wait voltage settling
}

if (!(cbcdr & CCM_CBCDR_PERIPH_CLK_SEL)) {
printf("need to switch to alternate clock during reconfigure of ARM PLL\n");
const uint32_t need1s = CCM_ANALOG_PLL_USB1_ENABLE | CCM_ANALOG_PLL_USB1_POWER |
CCM_ANALOG_PLL_USB1_LOCK | CCM_ANALOG_PLL_USB1_EN_USB_CLKS;
uint32_t sel, div;
if ((CCM_ANALOG_PLL_USB1 & need1s) == need1s) {
printf("USB PLL is running, so we can use 120 MHz\n");
sel = 0;
div = 3; // divide down to 120 MHz, so IPG is ok even if IPG_PODF=0
} else {
printf("USB PLL is off, use 24 MHz crystal\n");
sel = 1;
div = 0;
}
if ((cbcdr & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) != CCM_CBCDR_PERIPH_CLK2_PODF(div)) {
// PERIPH_CLK2 divider needs to be changed
cbcdr &= ~CCM_CBCDR_PERIPH_CLK2_PODF_MASK;
cbcdr |= CCM_CBCDR_PERIPH_CLK2_PODF(div);
CCM_CBCDR = cbcdr;
}
if ((cbcmr & CCM_CBCMR_PERIPH_CLK2_SEL_MASK) != CCM_CBCMR_PERIPH_CLK2_SEL(sel)) {
// PERIPH_CLK2 source select needs to be changed
cbcmr &= ~CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
cbcmr |= CCM_CBCMR_PERIPH_CLK2_SEL(sel);
CCM_CBCMR = cbcmr;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH2_CLK_SEL_BUSY) ; // wait
}
// switch over to PERIPH_CLK2
cbcdr |= CCM_CBCDR_PERIPH_CLK_SEL;
CCM_CBCDR = cbcdr;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH_CLK_SEL_BUSY) ; // wait
} else {
printf("already running from PERIPH_CLK2, safe to mess with ARM PLL\n");
}

// TODO: check if PLL2 running, can 352, 396 or 528 can work? (no need for ARM PLL)

// DIV_SELECT: 54-108 = official range 648 to 1296 in 12 MHz steps
uint32_t div_arm = 1;
uint32_t div_ahb = 1;
while (frequency * div_arm * div_ahb < 648000000) {
if (div_arm < 8) {
div_arm = div_arm + 1;
} else {
if (div_ahb < 5) {
div_ahb = div_ahb + 1;
div_arm = 1;
} else {
break;
}
}
}
uint32_t mult = (frequency * div_arm * div_ahb + 6000000) / 12000000;
if (mult > 108) mult = 108;
if (mult < 54) mult = 54;
printf("Freq: 12 MHz * %u / %u / %u\n", mult, div_arm, div_ahb);
frequency = mult * 12000000 / div_arm / div_ahb;

printf("ARM PLL=%x\n", CCM_ANALOG_PLL_ARM);
const uint32_t arm_pll_mask = CCM_ANALOG_PLL_ARM_LOCK | CCM_ANALOG_PLL_ARM_BYPASS |
CCM_ANALOG_PLL_ARM_ENABLE | CCM_ANALOG_PLL_ARM_POWERDOWN |
CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK;
if ((CCM_ANALOG_PLL_ARM & arm_pll_mask) != (CCM_ANALOG_PLL_ARM_LOCK
| CCM_ANALOG_PLL_ARM_ENABLE | CCM_ANALOG_PLL_ARM_DIV_SELECT(mult))) {
printf("ARM PLL needs reconfigure\n");
CCM_ANALOG_PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN;
// TODO: delay needed?
CCM_ANALOG_PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE
| CCM_ANALOG_PLL_ARM_DIV_SELECT(mult);
while (!(CCM_ANALOG_PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK)) ; // wait for lock
printf("ARM PLL=%x\n", CCM_ANALOG_PLL_ARM);
} else {
printf("ARM PLL already running at required frequency\n");
}

if ((CCM_CACRR & CCM_CACRR_ARM_PODF_MASK) != (div_arm - 1)) {
CCM_CACRR = CCM_CACRR_ARM_PODF(div_arm - 1);
while (CCM_CDHIPR & CCM_CDHIPR_ARM_PODF_BUSY) ; // wait
}

if ((cbcdr & CCM_CBCDR_AHB_PODF_MASK) != CCM_CBCDR_AHB_PODF(div_ahb - 1)) {
cbcdr &= ~CCM_CBCDR_AHB_PODF_MASK;
cbcdr |= CCM_CBCDR_AHB_PODF(div_ahb - 1);
CCM_CBCDR = cbcdr;
while (CCM_CDHIPR & CCM_CDHIPR_AHB_PODF_BUSY); // wait
}

uint32_t div_ipg = (frequency + 149999999) / 150000000;
if (div_ipg > 4) div_ipg = 4;
if ((cbcdr & CCM_CBCDR_IPG_PODF_MASK) != (CCM_CBCDR_IPG_PODF(div_ipg - 1))) {
cbcdr &= ~CCM_CBCDR_IPG_PODF_MASK;
cbcdr |= CCM_CBCDR_IPG_PODF(div_ipg - 1);
// TODO: how to safely change IPG_PODF ??
CCM_CBCDR = cbcdr;
}

cbcdr &= ~CCM_CBCDR_PERIPH_CLK_SEL;
CCM_CBCDR = cbcdr;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH_CLK_SEL_BUSY) ; // wait

F_CPU_ACTUAL = frequency;
F_BUS_ACTUAL = frequency / div_ipg;

printf("New Frequency: ARM=%u, IPG=%u\n", frequency, frequency / div_ipg);

// if voltage needs to decrease, do it after switch clock speed
if ((dcdc & DCDC_REG3_TRG_MASK) > DCDC_REG3_TRG((voltage - 800) / 25)) {
printf("Decreasing voltage to %u mV\n", voltage);
dcdc &= ~DCDC_REG3_TRG_MASK;
dcdc |= DCDC_REG3_TRG((voltage - 800) / 25);
DCDC_REG3 = dcdc;
while (!(DCDC_REG0 & DCDC_REG0_STS_DC_OK)) ; // wait voltage settling
}

return frequency;
}


+ 1
- 1
teensy4/debug/printf.h Прегледај датотеку

@@ -6,7 +6,7 @@
#ifdef __cplusplus
extern "C" {
#endif
void print_debug_init(void);
void printf_debug_init(void);
void printf_debug(const char *format, ...);
#ifdef __cplusplus
}

+ 51
- 6
teensy4/imxrt.h Прегледај датотеку

@@ -1153,10 +1153,13 @@ typedef struct {
#define CCM_CSR_REF_EN_B ((uint32_t)(1<<0))
#define CCM_CCSR_PLL3_SW_CLK_SEL ((uint32_t)(1<<0))
#define CCM_CACRR_ARM_PODF(n) ((uint32_t)(((n) & 0x07) << 0))
#define CCM_CACRR_ARM_PODF_MASK ((uint32_t)(0x07 << 0))
#define CCM_CBCDR_PERIPH_CLK2_PODF(n) ((uint32_t)(((n) & 0x07) << 27))
#define CCM_CBCDR_PERIPH_CLK2_PODF_MASK ((uint32_t)(0x07 << 27))
#define CCM_CBCDR_PERIPH_CLK_SEL ((uint32_t)(1<<25))
#define CCM_CBCDR_SEMC_PODF(n) ((uint32_t)(((n) & 0x07) << 16))
#define CCM_CBCDR_AHB_PODF(n) ((uint32_t)(((n) & 0x07) << 10))
#define CCM_CBCDR_AHB_PODF_MASK ((uint32_t)(0x07 << 10))
#define CCM_CBCDR_IPG_PODF(n) ((uint32_t)(((n) & 0x03) << 8))
#define CCM_CBCDR_IPG_PODF_MASK ((uint32_t)(0x03 << 8))
#define CCM_CBCDR_SEMC_ALT_CLK_SEL ((uint32_t)(1<<7))
@@ -1166,6 +1169,7 @@ typedef struct {
#define CCM_CBCMR_PRE_PERIPH_CLK_SEL(n) ((uint32_t)(((n) & 0x03) << 18))
#define CCM_CBCMR_TRACE_CLK_SEL(n) ((uint32_t)(((n) & 0x03) << 14))
#define CCM_CBCMR_PERIPH_CLK2_SEL(n) ((uint32_t)(((n) & 0x03) << 12))
#define CCM_CBCMR_PERIPH_CLK2_SEL_MASK ((uint32_t)(0x03 << 12))
#define CCM_CBCMR_LPSPI_CLK_SEL(n) ((uint32_t)(((n) & 0x03) << 4))
#define CCM_CBCMR_LPSPI_PODF_MASK ((uint32_t)(0x07 << 26))
#define CCM_CBCMR_LCDIF_PODF_MASK ((uint32_t)(0x07 << 23))
@@ -1428,11 +1432,11 @@ typedef struct {
#define CCM_ANALOG_MISC2_CLR (IMXRT_CCM_ANALOG.offset178)
#define CCM_ANALOG_MISC2_TOG (IMXRT_CCM_ANALOG.offset17C)
#define CCM_ANALOG_PLL_ARM_LOCK ((uint32_t)(1<<31))
#define CCM_ANALOG_PLL_ARM_BYPASS ((uint32_t)(1<<11))
#define CCM_ANALOG_PLL_ARM_ENABLE ((uint32_t)(1<<11))
#define CCM_ANALOG_PLL_ARM_POWERDOWN ((uint32_t)(1<<11))
#define CCM_ANALOG_PLL_ARM_DIV_SELECT(n) ((uint32_t)(((n) & 0x3F) << 0))
#define CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK ((uint32_t)(0x3F << 0))
#define CCM_ANALOG_PLL_ARM_BYPASS ((uint32_t)(1<<16))
#define CCM_ANALOG_PLL_ARM_ENABLE ((uint32_t)(1<<13))
#define CCM_ANALOG_PLL_ARM_POWERDOWN ((uint32_t)(1<<12))
#define CCM_ANALOG_PLL_ARM_DIV_SELECT(n) ((uint32_t)(((n) & 0x7F) << 0))
#define CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK ((uint32_t)(0x7F << 0))
#define CCM_ANALOG_PLL_USB1_LOCK ((uint32_t)(1<<31))
#define CCM_ANALOG_PLL_USB1_BYPASS ((uint32_t)(1<<16))
#define CCM_ANALOG_PLL_USB1_ENABLE ((uint32_t)(1<<13))
@@ -1469,6 +1473,47 @@ typedef struct {
#define DCDC_REG1 (IMXRT_DCDC.offset004)
#define DCDC_REG2 (IMXRT_DCDC.offset008)
#define DCDC_REG3 (IMXRT_DCDC.offset00C)
#define DCDC_REG0_STS_DC_OK ((uint32_t)(1<<31))
#define DCDC_REG0_XTAL_24M_OK ((uint32_t)(1<<29))
#define DCDC_REG0_CURRENT_ALERT_RESET ((uint32_t)(1<<28))
#define DCDC_REG0_XTALOK_DISABLE ((uint32_t)(1<<27))
#define DCDC_REG0_PWD_CMP_OFFSET ((uint32_t)(1<<26))
#define DCDC_REG0_LP_HIGH_HYS ((uint32_t)(1<<21))
#define DCDC_REG0_LP_OVERLOAD_FREQ_SEL ((uint32_t)(1<<20))
#define DCDC_REG0_LP_OVERLOAD_THRSH(n) ((uint32_t)(((n) & 0x03) << 18))
#define DCDC_REG0_PWD_HIGH_VOLT_DET ((uint32_t)(1<<17))
#define DCDC_REG0_EN_LP_OVERLOAD_SNS ((uint32_t)(1<<16))
#define DCDC_REG0_ADJ_POSLIMIT_BUCK(n) ((uint32_t)(((n) & 0x0F) << 12))
#define DCDC_REG0_PWD_CMP_BATT_DET ((uint32_t)(1<<11))
#define DCDC_REG0_OVERCUR_TRIG_ADJ(n) ((uint32_t)(((n) & 0x03) << 9))
#define DCDC_REG0_PWD_OVERCUR_DET ((uint32_t)(1<<8))
#define DCDC_REG0_CUR_SNS_THRSH(n) ((uint32_t)(((n) & 0x07) << 5))
#define DCDC_REG0_PWD_CUR_SNS_CMP ((uint32_t)(1<<4))
#define DCDC_REG0_PWD_OSC_INT ((uint32_t)(1<<3))
#define DCDC_REG0_SEL_CLK ((uint32_t)(1<<2))
#define DCDC_REG0_DISABLE_AUTO_CLK_SWITCH ((uint32_t)(1<<1))
#define DCDC_REG0_PWD_ZCD ((uint32_t)(1<<0))
#define DCDC_REG1_VBG_TRIM(n) ((uint32_t)(((n) & 0x1F) << 24))
#define DCDC_REG1_LOOPCTRL_EN_HYST ((uint32_t)(1<<23))
#define DCDC_REG1_LOOPCTRL_HST_THRESH ((uint32_t)(1<<21))
#define DCDC_REG1_LP_CMP_ISRC_SEL(n) ((uint32_t)(((n) & 0x03) << 12))
#define DCDC_REG1_REG_RLOAD_SW ((uint32_t)(1<<9))
#define DCDC_REG1_REG_FBK_SEL(n) ((uint32_t)(((n) & 0x03) << 7))
#define DCDC_REG2_DCM_SET_CTRL ((uint32_t)(1<<28))
#define DCDC_REG2_DISABLE_PULSE_SKIP ((uint32_t)(1<<27))
#define DCDC_REG2_LOOPCTRL_HYST_SIGN ((uint32_t)(1<<13))
#define DCDC_REG2_LOOPCTRL_RCSCALE_THRSH ((uint32_t)(1<<12))
#define DCDC_REG2_LOOPCTRL_EN_RCSCALE ((uint32_t)(((n) & 0x07) << 9))
#define DCDC_REG2_LOOPCTRL_DC_FF ((uint32_t)(((n) & 0x07) << 6))
#define DCDC_REG2_LOOPCTRL_DC_R ((uint32_t)(((n) & 0x0F) << 2))
#define DCDC_REG2_LOOPCTRL_DC_C ((uint32_t)(((n) & 0x03) << 0))
#define DCDC_REG3_DISABLE_STEP ((uint32_t)(1<<30))
#define DCDC_REG3_MISC_DISABLEFET_LOGIC ((uint32_t)(1<<28))
#define DCDC_REG3_MISC_DELAY_TIMING ((uint32_t)(1<<27))
#define DCDC_REG3_MINPWR_DC_HALFCLK ((uint32_t)(1<<24))
#define DCDC_REG3_TARGET_LP(n) ((uint32_t)(((n) & 0x07) << 8))
#define DCDC_REG3_TRG(n) ((uint32_t)(((n) & 0x1F) << 0))
#define DCDC_REG3_TRG_MASK ((uint32_t)(0x1F << 0))

// 21.4.1.1: page 849
#define IMXRT_DMAMUX (*(IMXRT_REGISTER32_t *)0x400EC000)
@@ -6992,7 +7037,7 @@ typedef struct {
#define SCB_SCR_SLEEPDEEP ((uint8_t)0x04) // Sleep or Deep Sleep
#define SCB_SCR_SLEEPONEXIT ((uint8_t)0x02) // Sleep-on-exit
#define SCB_CCR (*(volatile uint32_t *)0xE000ED14) // Configuration and Control
#define SCB_CCR_BP ((uint32_t)(1<<18)) // Branch prediction enable
#define SCB_CCR_BP ((uint32_t)(1<<18)) // Branch prediction enable
#define SCB_CCR_IC ((uint32_t)(1<<17)) // Instruction caches enable
#define SCB_CCR_DC ((uint32_t)(1<<16))
#define SCB_CCR_STKALIGN ((uint32_t)(1<<9))

+ 10
- 57
teensy4/startup.c Прегледај датотеку

@@ -27,6 +27,7 @@ void unused_interrupt_vector(void);
void usb_pll_start();
extern void analog_init(void);
extern void pwm_init(void);
uint32_t set_arm_clock(uint32_t frequency);


__attribute__((section(".startup")))
@@ -70,38 +71,19 @@ void ResetHandler(void)
configure_cache();
configure_systick();
usb_pll_start();
#if 1

//uint32_t pll1;
//uint32_t n =
//pll = CCM_ANALOG_PLL_ARM;
printf("ARM PLL = %08lX\n", CCM_ANALOG_PLL_ARM);
set_arm_clock(600000000);
//set_arm_clock(984000000); Ludicrous Speed

uint32_t cdcdr = CCM_CBCDR;
uint32_t armpll = CCM_ANALOG_PLL_ARM;
uint32_t armdiv = CCM_CACRR;
uint32_t cbcdr = CCM_CBCDR;
uint32_t cbcmr = CCM_CBCMR;
printf("AHB divisor = %ld\n", ((cdcdr >> 10) & 7) + 1);
printf("IPG divisor = %ld\n", ((cdcdr >> 8) & 3) + 1);

if (cdcdr & CCM_CBCDR_PERIPH_CLK_SEL) {
printf("using periph_clk2_clk_divided\n");

} else {
printf("using pre_periph_clk_sel\n");
uint32_t n = (cbcmr >> 19) & 3;
if (n == 0) {
printf("using PLL2\n");
} else if (n == 1) {
printf("using PLL2 PFD2\n");
} else if (n == 2) {
printf("using PLL2 PFD0\n");
} else {
printf("using PLL1\n");
}


}
//set_arm_clock(300000000);
#endif
printf("ARM PLL = %u MHz\n", (armpll & 0x7F) * 12);
printf("ARM divisor = %u\n", armdiv + 1);
printf("AHB divisor = %u\n", ((cbcdr >> 10) & 7) + 1);
printf("IPG divisor = %u\n", ((cbcdr >> 8) & 3) + 1);

// TODO: wait at least 20ms before starting USB
usb_init();
@@ -209,35 +191,6 @@ void configure_cache(void)
}


uint32_t set_arm_clock(uint32_t frequency)
{
if (!(CCM_CBCDR & CCM_CBCDR_PERIPH_CLK_SEL)) {
//print("need to switch to stable clock while reconfigure of ARM PLL\n");
const uint32_t need1s = CCM_ANALOG_PLL_USB1_ENABLE | CCM_ANALOG_PLL_USB1_POWER |
CCM_ANALOG_PLL_USB1_LOCK | CCM_ANALOG_PLL_USB1_EN_USB_CLKS;
if ((CCM_ANALOG_PLL_USB1 & need1s) == need1s) {
//print(" run temporarily from USB/4 (120 MHz)\n");

} else {
//print(" run temporarily from crystal (24 MHz)\n");

}

} else {
//print("already running from an alternate clock, ok to mess with ARM PLL\n");
}

// if SYS PLL running at 528 MHz
// if frequency == 528
// if frequency == 396
// if frequency == 352
//

return frequency;
}



__attribute__((section(".progmem")))
void usb_pll_start()
{

Loading…
Откажи
Сачувај