/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2016 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "kinetis.h" #include //#include "HardwareSerial.h" #if F_CPU > 120000000 && defined(__MK66FX1M0__) #include "core_pins.h" // delayMicroseconds() #endif #if defined(__MK20DX128__) || defined(__MK20DX256__) #define EEPROM_MAX 2048 #define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data #define EEESPLIT 0x30 // must be 0x30 on these chips #elif defined(__MK64FX512__) #define EEPROM_MAX 4096 #define EEPARTITION 0x05 // all 128K dataflash for EEPROM #define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal #elif defined(__MK66FX1M0__) #define EEPROM_MAX 4096 #define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data #define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal #elif defined(__MKL26Z64__) #define EEPROM_MAX 255 #endif #if E2END > (EEPROM_MAX-1) #error "E2END is set larger than the maximum possible EEPROM size" #endif #if defined(KINETISK) // The EEPROM is really RAM with a hardware-based backup system to // flash memory. Selecting a smaller size EEPROM allows more wear // leveling, for higher write endurance. If you edit this file, // set this to the smallest size your application can use. Also, // due to Freescale's implementation, writing 16 or 32 bit words // (aligned to 2 or 4 byte boundaries) has twice the endurance // compared to writing 8 bit bytes. // #if E2END < 32 #define EEPROM_SIZE 32 #define EEESIZE 0x09 #elif E2END < 64 #define EEPROM_SIZE 64 #define EEESIZE 0x08 #elif E2END < 128 #define EEPROM_SIZE 128 #define EEESIZE 0x07 #elif E2END < 256 #define EEPROM_SIZE 256 #define EEESIZE 0x06 #elif E2END < 512 #define EEPROM_SIZE 512 #define EEESIZE 0x05 #elif E2END < 1024 #define EEPROM_SIZE 1024 #define EEESIZE 0x04 #elif E2END < 2048 #define EEPROM_SIZE 2048 #define EEESIZE 0x03 #elif E2END < 4096 #define EEPROM_SIZE 4096 #define EEESIZE 0x02 #endif // Writing unaligned 16 or 32 bit data is handled automatically when // this is defined, but at a cost of extra code size. Without this, // any unaligned write will cause a hard fault exception! If you're // absolutely sure all 16 and 32 bit writes will be aligned, you can // remove the extra unnecessary code. // #define HANDLE_UNALIGNED_WRITES void eeprom_initialize(void) { uint32_t count=0; uint16_t do_flash_cmd[] = { 0xf06f, 0x037f, 0x7003, 0x7803, 0xf013, 0x0f80, 0xd0fb, 0x4770}; uint8_t status; if (FTFL_FCNFG & FTFL_FCNFG_RAMRDY) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; // FlexRAM is configured as traditional RAM // We need to reconfigure for EEPROM usage FTFL_FCCOB0 = 0x80; // PGMPART = Program Partition Command FTFL_FCCOB3 = 0; FTFL_FCCOB4 = EEESPLIT | EEESIZE; FTFL_FCCOB5 = EEPARTITION; __disable_irq(); // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple... (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&FTFL_FSTAT); __enable_irq(); status = FTFL_FSTAT; if (status & 0x70) { FTFL_FSTAT = (status & 0x70); return; // error } } // wait for eeprom to become ready (is this really necessary?) while (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) { if (++count > 200000) break; } } #define FlexRAM ((volatile uint8_t *)0x14000000) uint8_t eeprom_read_byte(const uint8_t *addr) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE) return 0; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); return FlexRAM[offset]; } uint16_t eeprom_read_word(const uint16_t *addr) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE-1) return 0; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); return *(uint16_t *)(&FlexRAM[offset]); } uint32_t eeprom_read_dword(const uint32_t *addr) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE-3) return 0; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); return *(uint32_t *)(&FlexRAM[offset]); } void eeprom_read_block(void *buf, const void *addr, uint32_t len) { uint32_t offset = (uint32_t)addr; uint8_t *dest = (uint8_t *)buf; uint32_t end = offset + len; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); if (end > EEPROM_SIZE) end = EEPROM_SIZE; while (offset < end) { *dest++ = FlexRAM[offset++]; } } int eeprom_is_ready(void) { return (FTFL_FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0; } static void flexram_wait(void) { while (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) { // TODO: timeout } } #if F_CPU > 120000000 && defined(__MK66FX1M0__) static volatile uint16_t c_intrestore = 0; void c_enable_irq( void ); void c_disable_irq( void ); static __inline__ uint32_t __get_primask(void) \ { uint32_t primask = 0; \ __asm__ volatile ("MRS %[result], PRIMASK\n\t":[result]"=r"(primask)::); \ return primask; } // returns 0 if interrupts enabled, 1 if disabled void c_enable_irq( void ){ if ( c_intrestore ) { c_intrestore =0; __enable_irq( ); } } void c_disable_irq( void ){ if ( !__get_primask() ) { // Returns 0 if they are enabled, or non-zero if disabled __disable_irq( ); c_intrestore = 1; } } static volatile uint8_t restore_hsrun = 0; static void hsrun_off(void) { if (SMC_PMSTAT == SMC_PMSTAT_HSRUN) { c_disable_irq( ); // Turn off interrupts for the DURATION !!!! SMC_PMCTRL = SMC_PMCTRL_RUNM(0); // exit HSRUN mode while (SMC_PMSTAT == SMC_PMSTAT_HSRUN) delayMicroseconds(2); // wait for !HSRUN delayMicroseconds(100); restore_hsrun = 1; } } static void hsrun_on(void) { if (restore_hsrun) { SMC_PMCTRL = SMC_PMCTRL_RUNM(3); // enter HSRUN mode while (SMC_PMSTAT != SMC_PMSTAT_HSRUN) delayMicroseconds(2);; // wait for HSRUN restore_hsrun = 0; c_enable_irq( ); // Restore interrupts only when HSRUN restored } } } #else #define hsrun_off() #define hsrun_on() #endif void eeprom_write_byte(uint8_t *addr, uint8_t value) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE) return; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); hsrun_off(); if (FlexRAM[offset] != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset] = value; flexram_wait(); } hsrun_on(); } void eeprom_write_word(uint16_t *addr, uint16_t value) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE-1) return; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); hsrun_off(); #ifdef HANDLE_UNALIGNED_WRITES if ((offset & 1) == 0) { #endif if (*(uint16_t *)(&FlexRAM[offset]) != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint16_t *)(&FlexRAM[offset]) = value; flexram_wait(); } #ifdef HANDLE_UNALIGNED_WRITES } else { if (FlexRAM[offset] != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset] = value; flexram_wait(); } if (FlexRAM[offset + 1] != (value >> 8)) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset + 1] = value >> 8; flexram_wait(); } } #endif hsrun_on(); } void eeprom_write_dword(uint32_t *addr, uint32_t value) { uint32_t offset = (uint32_t)addr; if (offset >= EEPROM_SIZE-3) return; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); hsrun_off(); #ifdef HANDLE_UNALIGNED_WRITES switch (offset & 3) { case 0: #endif if (*(uint32_t *)(&FlexRAM[offset]) != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint32_t *)(&FlexRAM[offset]) = value; flexram_wait(); } hsrun_on(); return; #ifdef HANDLE_UNALIGNED_WRITES case 2: if (*(uint16_t *)(&FlexRAM[offset]) != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint16_t *)(&FlexRAM[offset]) = value; flexram_wait(); } if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16; flexram_wait(); } hsrun_on(); return; default: if (FlexRAM[offset] != value) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset] = value; flexram_wait(); } if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8; flexram_wait(); } if (FlexRAM[offset + 3] != (value >> 24)) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset + 3] = value >> 24; flexram_wait(); } } #endif hsrun_on(); } void eeprom_write_block(const void *buf, void *addr, uint32_t len) { uint32_t offset = (uint32_t)addr; const uint8_t *src = (const uint8_t *)buf; if (offset >= EEPROM_SIZE) return; if (!(FTFL_FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); hsrun_off(); if (len >= EEPROM_SIZE) len = EEPROM_SIZE; if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset; while (len > 0) { uint32_t lsb = offset & 3; if (lsb == 0 && len >= 4) { // write aligned 32 bits uint32_t val32; val32 = *src++; val32 |= (*src++ << 8); val32 |= (*src++ << 16); val32 |= (*src++ << 24); if (*(uint32_t *)(&FlexRAM[offset]) != val32) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint32_t *)(&FlexRAM[offset]) = val32; flexram_wait(); } offset += 4; len -= 4; } else if ((lsb == 0 || lsb == 2) && len >= 2) { // write aligned 16 bits uint16_t val16; val16 = *src++; val16 |= (*src++ << 8); if (*(uint16_t *)(&FlexRAM[offset]) != val16) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; *(uint16_t *)(&FlexRAM[offset]) = val16; flexram_wait(); } offset += 2; len -= 2; } else { // write 8 bits uint8_t val8 = *src++; if (FlexRAM[offset] != val8) { uint8_t stat = FTFL_FSTAT & 0x70; if (stat) FTFL_FSTAT = stat; FlexRAM[offset] = val8; flexram_wait(); } offset++; len--; } } hsrun_on(); } /* void do_flash_cmd(volatile uint8_t *fstat) { *fstat = 0x80; while ((*fstat & 0x80) == 0) ; // wait } 00000000 : 0: f06f 037f mvn.w r3, #127 ; 0x7f 4: 7003 strb r3, [r0, #0] 6: 7803 ldrb r3, [r0, #0] 8: f013 0f80 tst.w r3, #128 ; 0x80 c: d0fb beq.n 6 e: 4770 bx lr */ #elif defined(KINETISL) #define EEPROM_SIZE (E2END+1) #define FLASH_BEGIN (uint16_t *)63488 #define FLASH_END (uint16_t *)65536 static uint16_t flashend = 0; void eeprom_initialize(void) { const uint16_t *p = FLASH_BEGIN; do { if (*p++ == 0xFFFF) { flashend = (uint32_t)(p - 2); return; } } while (p < FLASH_END); flashend = (uint32_t)(FLASH_END - 1); } uint8_t eeprom_read_byte(const uint8_t *addr) { uint32_t offset = (uint32_t)addr; const uint16_t *p = FLASH_BEGIN; const uint16_t *end = (const uint16_t *)((uint32_t)flashend); uint16_t val; uint8_t data=0xFF; if (!end) { eeprom_initialize(); end = (const uint16_t *)((uint32_t)flashend); } if (offset < EEPROM_SIZE) { while (p <= end) { val = *p++; if ((val & 255) == offset) data = val >> 8; } } return data; } static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data) { // with great power comes great responsibility.... uint32_t stat; *(uint32_t *)&FTFL_FCCOB3 = 0x06000000 | (addr & 0x00FFFFFC); *(uint32_t *)&FTFL_FCCOB7 = data; __disable_irq(); (*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&FTFL_FSTAT); __enable_irq(); stat = FTFL_FSTAT & 0x70; if (stat) { FTFL_FSTAT = stat; } MCM_PLACR |= MCM_PLACR_CFCC; } void eeprom_write_byte(uint8_t *addr, uint8_t data) { uint32_t offset = (uint32_t)addr; const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend); uint32_t i, val, flashaddr; uint16_t do_flash_cmd[] = { 0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770}; uint8_t buf[EEPROM_SIZE]; if (offset >= EEPROM_SIZE) return; if (!end) { eeprom_initialize(); end = (const uint16_t *)((uint32_t)flashend); } if (++end < FLASH_END) { val = (data << 8) | offset; flashaddr = (uint32_t)end; flashend = flashaddr; if ((flashaddr & 2) == 0) { val |= 0xFFFF0000; } else { val <<= 16; val |= 0x0000FFFF; } flash_write(do_flash_cmd, flashaddr, val); } else { for (i=0; i < EEPROM_SIZE; i++) { buf[i] = 0xFF; } for (p = FLASH_BEGIN; p < FLASH_END; p++) { val = *p; if ((val & 255) < EEPROM_SIZE) { buf[val & 255] = val >> 8; } } buf[offset] = data; for (flashaddr=(uint32_t)FLASH_BEGIN; flashaddr < (uint32_t)FLASH_END; flashaddr += 1024) { *(uint32_t *)&FTFL_FCCOB3 = 0x09000000 | flashaddr; __disable_irq(); (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&FTFL_FSTAT); __enable_irq(); val = FTFL_FSTAT & 0x70; if (val) FTFL_FSTAT = val; MCM_PLACR |= MCM_PLACR_CFCC; } flashaddr=(uint32_t)FLASH_BEGIN; for (i=0; i < EEPROM_SIZE; i++) { if (buf[i] == 0xFF) continue; if ((flashaddr & 2) == 0) { val = (buf[i] << 8) | i; } else { val = val | (buf[i] << 24) | (i << 16); flash_write(do_flash_cmd, flashaddr, val); } flashaddr += 2; } flashend = flashaddr; if ((flashaddr & 2)) { val |= 0xFFFF0000; flash_write(do_flash_cmd, flashaddr, val); } } } /* void do_flash_cmd(volatile uint8_t *fstat) { *fstat = 0x80; while ((*fstat & 0x80) == 0) ; // wait } 00000000 : 0: 2380 movs r3, #128 ; 0x80 2: 7003 strb r3, [r0, #0] 4: 7803 ldrb r3, [r0, #0] 6: b25b sxtb r3, r3 8: 2b00 cmp r3, #0 a: dafb bge.n 4 c: 4770 bx lr */ uint16_t eeprom_read_word(const uint16_t *addr) { const uint8_t *p = (const uint8_t *)addr; return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8); } uint32_t eeprom_read_dword(const uint32_t *addr) { const uint8_t *p = (const uint8_t *)addr; return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8) | (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24); } void eeprom_read_block(void *buf, const void *addr, uint32_t len) { const uint8_t *p = (const uint8_t *)addr; uint8_t *dest = (uint8_t *)buf; while (len--) { *dest++ = eeprom_read_byte(p++); } } int eeprom_is_ready(void) { return 1; } void eeprom_write_word(uint16_t *addr, uint16_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p, value >> 8); } void eeprom_write_dword(uint32_t *addr, uint32_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p++, value >> 8); eeprom_write_byte(p++, value >> 16); eeprom_write_byte(p, value >> 24); } void eeprom_write_block(const void *buf, void *addr, uint32_t len) { uint8_t *p = (uint8_t *)addr; const uint8_t *src = (const uint8_t *)buf; while (len--) { eeprom_write_byte(p++, *src++); } } #endif // KINETISL