/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "kinetis.h" #include "core_pins.h" // testing only #include "ser_print.h" // testing only #include // Flash Security Setting. On Teensy 3.2, you can lock the MK20 chip to prevent // anyone from reading your code. You CAN still reprogram your Teensy while // security is set, but the bootloader will be unable to respond to auto-reboot // requests from Arduino. Pressing the program button will cause a full chip // erase to gain access, because the bootloader chip is locked out. Normally, // erase occurs when uploading begins, so if you press the Program button // accidentally, simply power cycling will run your program again. When // security is locked, any Program button press causes immediate full erase. // Special care must be used with the Program button, because it must be made // accessible to initiate reprogramming, but it must not be accidentally // pressed when Teensy Loader is not being used to reprogram. To set lock the // security change this to 0xDC. Teensy 3.0 and 3.1 do not support security lock. #define FSEC 0xDE // Flash Options #define FOPT 0xF9 extern unsigned long _stext; extern unsigned long _etext; extern unsigned long _sdata; extern unsigned long _edata; extern unsigned long _sbss; extern unsigned long _ebss; extern unsigned long _estack; //extern void __init_array_start(void); //extern void __init_array_end(void); extern int main (void); void ResetHandler(void); void _init_Teensyduino_internal_(void) __attribute__((noinline)); void __libc_init_array(void); void fault_isr(void) { #if 0 uint32_t addr; SIM_SCGC4 |= 0x00000400; UART0_BDH = 0; UART0_BDL = 26; // 115200 at 48 MHz UART0_C2 = UART_C2_TE; PORTB_PCR17 = PORT_PCR_MUX(3); ser_print("\nfault: \n??: "); asm("ldr %0, [sp, #52]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\n??: "); asm("ldr %0, [sp, #48]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\n??: "); asm("ldr %0, [sp, #44]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\npsr:"); asm("ldr %0, [sp, #40]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nadr:"); asm("ldr %0, [sp, #36]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nlr: "); asm("ldr %0, [sp, #32]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr12:"); asm("ldr %0, [sp, #28]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr3: "); asm("ldr %0, [sp, #24]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr2: "); asm("ldr %0, [sp, #20]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr1: "); asm("ldr %0, [sp, #16]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr0: "); asm("ldr %0, [sp, #12]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nr4: "); asm("ldr %0, [sp, #8]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\nlr: "); asm("ldr %0, [sp, #4]" : "=r" (addr) ::); ser_print_hex32(addr); ser_print("\n"); asm("ldr %0, [sp, #0]" : "=r" (addr) ::); #endif while (1) { // keep polling some communication while in fault // mode, so we don't completely die. if (SIM_SCGC4 & SIM_SCGC4_USBOTG) usb_isr(); if (SIM_SCGC4 & SIM_SCGC4_UART0) uart0_status_isr(); if (SIM_SCGC4 & SIM_SCGC4_UART1) uart1_status_isr(); if (SIM_SCGC4 & SIM_SCGC4_UART2) uart2_status_isr(); } } void unused_isr(void) { fault_isr(); } extern volatile uint32_t systick_millis_count; void systick_default_isr(void) { systick_millis_count++; } void nmi_isr(void) __attribute__ ((weak, alias("unused_isr"))); void hard_fault_isr(void) __attribute__ ((weak, alias("fault_isr"))); void memmanage_fault_isr(void) __attribute__ ((weak, alias("fault_isr"))); void bus_fault_isr(void) __attribute__ ((weak, alias("fault_isr"))); void usage_fault_isr(void) __attribute__ ((weak, alias("fault_isr"))); void svcall_isr(void) __attribute__ ((weak, alias("unused_isr"))); void debugmonitor_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pendablesrvreq_isr(void) __attribute__ ((weak, alias("unused_isr"))); void systick_isr(void) __attribute__ ((weak, alias("systick_default_isr"))); void dma_ch0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch3_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch4_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch5_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch6_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch7_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch8_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch9_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch10_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch11_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch12_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch13_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch14_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_ch15_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dma_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void mcm_isr(void) __attribute__ ((weak, alias("unused_isr"))); void randnum_isr(void) __attribute__ ((weak, alias("unused_isr"))); void flash_cmd_isr(void) __attribute__ ((weak, alias("unused_isr"))); void flash_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void low_voltage_isr(void) __attribute__ ((weak, alias("unused_isr"))); void wakeup_isr(void) __attribute__ ((weak, alias("unused_isr"))); void watchdog_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2c0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2c1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2c2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2c3_isr(void) __attribute__ ((weak, alias("unused_isr"))); void spi0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void spi1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void spi2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void sdhc_isr(void) __attribute__ ((weak, alias("unused_isr"))); void enet_timer_isr(void) __attribute__ ((weak, alias("unused_isr"))); void enet_tx_isr(void) __attribute__ ((weak, alias("unused_isr"))); void enet_rx_isr(void) __attribute__ ((weak, alias("unused_isr"))); void enet_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_message_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_bus_off_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_tx_warn_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_rx_warn_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can0_wakeup_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_message_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_bus_off_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_tx_warn_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_rx_warn_isr(void) __attribute__ ((weak, alias("unused_isr"))); void can1_wakeup_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2s0_tx_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2s0_rx_isr(void) __attribute__ ((weak, alias("unused_isr"))); void i2s0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart0_lon_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart0_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart0_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart1_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart1_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart2_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart2_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart3_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart3_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart4_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart4_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart5_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void uart5_error_isr(void) __attribute__ ((weak, alias("unused_isr"))); void lpuart0_status_isr(void) __attribute__ ((weak, alias("unused_isr"))); void adc0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void adc1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void cmp0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void cmp1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void cmp2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void cmp3_isr(void) __attribute__ ((weak, alias("unused_isr"))); void ftm0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void ftm1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void ftm2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void ftm3_isr(void) __attribute__ ((weak, alias("unused_isr"))); void tpm0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void tpm1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void tpm2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void cmt_isr(void) __attribute__ ((weak, alias("unused_isr"))); void rtc_alarm_isr(void) __attribute__ ((weak, alias("unused_isr"))); void rtc_seconds_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pit_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pit0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pit1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pit2_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pit3_isr(void) __attribute__ ((weak, alias("unused_isr"))); void pdb_isr(void) __attribute__ ((weak, alias("unused_isr"))); void usb_isr(void) __attribute__ ((weak, alias("unused_isr"))); void usb_charge_isr(void) __attribute__ ((weak, alias("unused_isr"))); void usbhs_isr(void) __attribute__ ((weak, alias("unused_isr"))); void usbhs_phy_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dac0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void dac1_isr(void) __attribute__ ((weak, alias("unused_isr"))); void tsi0_isr(void) __attribute__ ((weak, alias("unused_isr"))); void mcg_isr(void) __attribute__ ((weak, alias("unused_isr"))); void lptmr_isr(void) __attribute__ ((weak, alias("unused_isr"))); void porta_isr(void) __attribute__ ((weak, alias("unused_isr"))); void portb_isr(void) __attribute__ ((weak, alias("unused_isr"))); void portc_isr(void) __attribute__ ((weak, alias("unused_isr"))); void portd_isr(void) __attribute__ ((weak, alias("unused_isr"))); void porte_isr(void) __attribute__ ((weak, alias("unused_isr"))); void portcd_isr(void) __attribute__ ((weak, alias("unused_isr"))); void software_isr(void) __attribute__ ((weak, alias("unused_isr"))); #if defined(__MK20DX128__) __attribute__ ((section(".dmabuffers"), used, aligned(256))) #elif defined(__MK20DX256__) __attribute__ ((section(".dmabuffers"), used, aligned(512))) #elif defined(__MKL26Z64__) __attribute__ ((section(".dmabuffers"), used, aligned(256))) #elif defined(__MK64FX512__) __attribute__ ((section(".dmabuffers"), used, aligned(512))) #elif defined(__MK66FX1M0__) __attribute__ ((section(".dmabuffers"), used, aligned(512))) #endif void (* _VectorsRam[NVIC_NUM_INTERRUPTS+16])(void); __attribute__ ((section(".vectors"), used)) void (* const _VectorsFlash[NVIC_NUM_INTERRUPTS+16])(void) = { (void (*)(void))((unsigned long)&_estack), // 0 ARM: Initial Stack Pointer ResetHandler, // 1 ARM: Initial Program Counter nmi_isr, // 2 ARM: Non-maskable Interrupt (NMI) hard_fault_isr, // 3 ARM: Hard Fault memmanage_fault_isr, // 4 ARM: MemManage Fault bus_fault_isr, // 5 ARM: Bus Fault usage_fault_isr, // 6 ARM: Usage Fault fault_isr, // 7 -- fault_isr, // 8 -- fault_isr, // 9 -- fault_isr, // 10 -- svcall_isr, // 11 ARM: Supervisor call (SVCall) debugmonitor_isr, // 12 ARM: Debug Monitor fault_isr, // 13 -- pendablesrvreq_isr, // 14 ARM: Pendable req serv(PendableSrvReq) systick_isr, // 15 ARM: System tick timer (SysTick) #if defined(__MK20DX128__) dma_ch0_isr, // 16 DMA channel 0 transfer complete dma_ch1_isr, // 17 DMA channel 1 transfer complete dma_ch2_isr, // 18 DMA channel 2 transfer complete dma_ch3_isr, // 19 DMA channel 3 transfer complete dma_error_isr, // 20 DMA error interrupt channel unused_isr, // 21 DMA -- flash_cmd_isr, // 22 Flash Memory Command complete flash_error_isr, // 23 Flash Read collision low_voltage_isr, // 24 Low-voltage detect/warning wakeup_isr, // 25 Low Leakage Wakeup watchdog_isr, // 26 Both EWM and WDOG interrupt i2c0_isr, // 27 I2C0 spi0_isr, // 28 SPI0 i2s0_tx_isr, // 29 I2S0 Transmit i2s0_rx_isr, // 30 I2S0 Receive uart0_lon_isr, // 31 UART0 CEA709.1-B (LON) status uart0_status_isr, // 32 UART0 status uart0_error_isr, // 33 UART0 error uart1_status_isr, // 34 UART1 status uart1_error_isr, // 35 UART1 error uart2_status_isr, // 36 UART2 status uart2_error_isr, // 37 UART2 error adc0_isr, // 38 ADC0 cmp0_isr, // 39 CMP0 cmp1_isr, // 40 CMP1 ftm0_isr, // 41 FTM0 ftm1_isr, // 42 FTM1 cmt_isr, // 43 CMT rtc_alarm_isr, // 44 RTC Alarm interrupt rtc_seconds_isr, // 45 RTC Seconds interrupt pit0_isr, // 46 PIT Channel 0 pit1_isr, // 47 PIT Channel 1 pit2_isr, // 48 PIT Channel 2 pit3_isr, // 49 PIT Channel 3 pdb_isr, // 50 PDB Programmable Delay Block usb_isr, // 51 USB OTG usb_charge_isr, // 52 USB Charger Detect tsi0_isr, // 53 TSI0 mcg_isr, // 54 MCG lptmr_isr, // 55 Low Power Timer porta_isr, // 56 Pin detect (Port A) portb_isr, // 57 Pin detect (Port B) portc_isr, // 58 Pin detect (Port C) portd_isr, // 59 Pin detect (Port D) porte_isr, // 60 Pin detect (Port E) software_isr, // 61 Software interrupt #elif defined(__MK20DX256__) dma_ch0_isr, // 16 DMA channel 0 transfer complete dma_ch1_isr, // 17 DMA channel 1 transfer complete dma_ch2_isr, // 18 DMA channel 2 transfer complete dma_ch3_isr, // 19 DMA channel 3 transfer complete dma_ch4_isr, // 20 DMA channel 4 transfer complete dma_ch5_isr, // 21 DMA channel 5 transfer complete dma_ch6_isr, // 22 DMA channel 6 transfer complete dma_ch7_isr, // 23 DMA channel 7 transfer complete dma_ch8_isr, // 24 DMA channel 8 transfer complete dma_ch9_isr, // 25 DMA channel 9 transfer complete dma_ch10_isr, // 26 DMA channel 10 transfer complete dma_ch11_isr, // 27 DMA channel 11 transfer complete dma_ch12_isr, // 28 DMA channel 12 transfer complete dma_ch13_isr, // 29 DMA channel 13 transfer complete dma_ch14_isr, // 30 DMA channel 14 transfer complete dma_ch15_isr, // 31 DMA channel 15 transfer complete dma_error_isr, // 32 DMA error interrupt channel unused_isr, // 33 -- flash_cmd_isr, // 34 Flash Memory Command complete flash_error_isr, // 35 Flash Read collision low_voltage_isr, // 36 Low-voltage detect/warning wakeup_isr, // 37 Low Leakage Wakeup watchdog_isr, // 38 Both EWM and WDOG interrupt unused_isr, // 39 -- i2c0_isr, // 40 I2C0 i2c1_isr, // 41 I2C1 spi0_isr, // 42 SPI0 spi1_isr, // 43 SPI1 unused_isr, // 44 -- can0_message_isr, // 45 CAN OR'ed Message buffer (0-15) can0_bus_off_isr, // 46 CAN Bus Off can0_error_isr, // 47 CAN Error can0_tx_warn_isr, // 48 CAN Transmit Warning can0_rx_warn_isr, // 49 CAN Receive Warning can0_wakeup_isr, // 50 CAN Wake Up i2s0_tx_isr, // 51 I2S0 Transmit i2s0_rx_isr, // 52 I2S0 Receive unused_isr, // 53 -- unused_isr, // 54 -- unused_isr, // 55 -- unused_isr, // 56 -- unused_isr, // 57 -- unused_isr, // 58 -- unused_isr, // 59 -- uart0_lon_isr, // 60 UART0 CEA709.1-B (LON) status uart0_status_isr, // 61 UART0 status uart0_error_isr, // 62 UART0 error uart1_status_isr, // 63 UART1 status uart1_error_isr, // 64 UART1 error uart2_status_isr, // 65 UART2 status uart2_error_isr, // 66 UART2 error unused_isr, // 67 -- unused_isr, // 68 -- unused_isr, // 69 -- unused_isr, // 70 -- unused_isr, // 71 -- unused_isr, // 72 -- adc0_isr, // 73 ADC0 adc1_isr, // 74 ADC1 cmp0_isr, // 75 CMP0 cmp1_isr, // 76 CMP1 cmp2_isr, // 77 CMP2 ftm0_isr, // 78 FTM0 ftm1_isr, // 79 FTM1 ftm2_isr, // 80 FTM2 cmt_isr, // 81 CMT rtc_alarm_isr, // 82 RTC Alarm interrupt rtc_seconds_isr, // 83 RTC Seconds interrupt pit0_isr, // 84 PIT Channel 0 pit1_isr, // 85 PIT Channel 1 pit2_isr, // 86 PIT Channel 2 pit3_isr, // 87 PIT Channel 3 pdb_isr, // 88 PDB Programmable Delay Block usb_isr, // 89 USB OTG usb_charge_isr, // 90 USB Charger Detect unused_isr, // 91 -- unused_isr, // 92 -- unused_isr, // 93 -- unused_isr, // 94 -- unused_isr, // 95 -- unused_isr, // 96 -- dac0_isr, // 97 DAC0 unused_isr, // 98 -- tsi0_isr, // 99 TSI0 mcg_isr, // 100 MCG lptmr_isr, // 101 Low Power Timer unused_isr, // 102 -- porta_isr, // 103 Pin detect (Port A) portb_isr, // 104 Pin detect (Port B) portc_isr, // 105 Pin detect (Port C) portd_isr, // 106 Pin detect (Port D) porte_isr, // 107 Pin detect (Port E) unused_isr, // 108 -- unused_isr, // 109 -- software_isr, // 110 Software interrupt #elif defined(__MKL26Z64__) dma_ch0_isr, // 16 DMA channel 0 transfer complete dma_ch1_isr, // 17 DMA channel 1 transfer complete dma_ch2_isr, // 18 DMA channel 2 transfer complete dma_ch3_isr, // 19 DMA channel 3 transfer complete unused_isr, // 20 -- flash_cmd_isr, // 21 Flash Memory Command complete low_voltage_isr, // 22 Low-voltage detect/warning wakeup_isr, // 23 Low Leakage Wakeup i2c0_isr, // 24 I2C0 i2c1_isr, // 25 I2C1 spi0_isr, // 26 SPI0 spi1_isr, // 27 SPI1 uart0_status_isr, // 28 UART0 status & error uart1_status_isr, // 29 UART1 status & error uart2_status_isr, // 30 UART2 status & error adc0_isr, // 31 ADC0 cmp0_isr, // 32 CMP0 ftm0_isr, // 33 FTM0 ftm1_isr, // 34 FTM1 ftm2_isr, // 35 FTM2 rtc_alarm_isr, // 36 RTC Alarm interrupt rtc_seconds_isr, // 37 RTC Seconds interrupt pit_isr, // 38 PIT Both Channels i2s0_isr, // 39 I2S0 Transmit & Receive usb_isr, // 40 USB OTG dac0_isr, // 41 DAC0 tsi0_isr, // 42 TSI0 mcg_isr, // 43 MCG lptmr_isr, // 44 Low Power Timer software_isr, // 45 Software interrupt porta_isr, // 46 Pin detect (Port A) portcd_isr, // 47 Pin detect (Port C and D) #elif defined(__MK64FX512__) dma_ch0_isr, // 16 DMA channel 0 transfer complete dma_ch1_isr, // 17 DMA channel 1 transfer complete dma_ch2_isr, // 18 DMA channel 2 transfer complete dma_ch3_isr, // 19 DMA channel 3 transfer complete dma_ch4_isr, // 20 DMA channel 4 transfer complete dma_ch5_isr, // 21 DMA channel 5 transfer complete dma_ch6_isr, // 22 DMA channel 6 transfer complete dma_ch7_isr, // 23 DMA channel 7 transfer complete dma_ch8_isr, // 24 DMA channel 8 transfer complete dma_ch9_isr, // 25 DMA channel 9 transfer complete dma_ch10_isr, // 26 DMA channel 10 transfer complete dma_ch11_isr, // 27 DMA channel 11 transfer complete dma_ch12_isr, // 28 DMA channel 12 transfer complete dma_ch13_isr, // 29 DMA channel 13 transfer complete dma_ch14_isr, // 30 DMA channel 14 transfer complete dma_ch15_isr, // 31 DMA channel 15 transfer complete dma_error_isr, // 32 DMA error interrupt channel mcm_isr, // 33 MCM flash_cmd_isr, // 34 Flash Memory Command complete flash_error_isr, // 35 Flash Read collision low_voltage_isr, // 36 Low-voltage detect/warning wakeup_isr, // 37 Low Leakage Wakeup watchdog_isr, // 38 Both EWM and WDOG interrupt randnum_isr, // 39 Random Number Generator i2c0_isr, // 40 I2C0 i2c1_isr, // 41 I2C1 spi0_isr, // 42 SPI0 spi1_isr, // 43 SPI1 i2s0_tx_isr, // 44 I2S0 Transmit i2s0_rx_isr, // 45 I2S0 Receive unused_isr, // 46 -- uart0_status_isr, // 47 UART0 status uart0_error_isr, // 48 UART0 error uart1_status_isr, // 49 UART1 status uart1_error_isr, // 50 UART1 error uart2_status_isr, // 51 UART2 status uart2_error_isr, // 52 UART2 error uart3_status_isr, // 53 UART3 status uart3_error_isr, // 54 UART3 error adc0_isr, // 55 ADC0 cmp0_isr, // 56 CMP0 cmp1_isr, // 57 CMP1 ftm0_isr, // 58 FTM0 ftm1_isr, // 59 FTM1 ftm2_isr, // 60 FTM2 cmt_isr, // 61 CMT rtc_alarm_isr, // 62 RTC Alarm interrupt rtc_seconds_isr, // 63 RTC Seconds interrupt pit0_isr, // 64 PIT Channel 0 pit1_isr, // 65 PIT Channel 1 pit2_isr, // 66 PIT Channel 2 pit3_isr, // 67 PIT Channel 3 pdb_isr, // 68 PDB Programmable Delay Block usb_isr, // 69 USB OTG usb_charge_isr, // 70 USB Charger Detect unused_isr, // 71 -- dac0_isr, // 72 DAC0 mcg_isr, // 73 MCG lptmr_isr, // 74 Low Power Timer porta_isr, // 75 Pin detect (Port A) portb_isr, // 76 Pin detect (Port B) portc_isr, // 77 Pin detect (Port C) portd_isr, // 78 Pin detect (Port D) porte_isr, // 79 Pin detect (Port E) software_isr, // 80 Software interrupt spi2_isr, // 81 SPI2 uart4_status_isr, // 82 UART4 status uart4_error_isr, // 83 UART4 error uart5_status_isr, // 84 UART4 status uart5_error_isr, // 85 UART4 error cmp2_isr, // 86 CMP2 ftm3_isr, // 87 FTM3 dac1_isr, // 88 DAC1 adc1_isr, // 89 ADC1 i2c2_isr, // 90 I2C2 can0_message_isr, // 91 CAN OR'ed Message buffer (0-15) can0_bus_off_isr, // 92 CAN Bus Off can0_error_isr, // 93 CAN Error can0_tx_warn_isr, // 94 CAN Transmit Warning can0_rx_warn_isr, // 95 CAN Receive Warning can0_wakeup_isr, // 96 CAN Wake Up sdhc_isr, // 97 SDHC enet_timer_isr, // 98 Ethernet IEEE1588 Timers enet_tx_isr, // 99 Ethernet Transmit enet_rx_isr, // 100 Ethernet Receive enet_error_isr, // 101 Ethernet Error #elif defined(__MK66FX1M0__) dma_ch0_isr, // 16 DMA channel 0 transfer complete dma_ch1_isr, // 17 DMA channel 1 transfer complete dma_ch2_isr, // 18 DMA channel 2 transfer complete dma_ch3_isr, // 19 DMA channel 3 transfer complete dma_ch4_isr, // 20 DMA channel 4 transfer complete dma_ch5_isr, // 21 DMA channel 5 transfer complete dma_ch6_isr, // 22 DMA channel 6 transfer complete dma_ch7_isr, // 23 DMA channel 7 transfer complete dma_ch8_isr, // 24 DMA channel 8 transfer complete dma_ch9_isr, // 25 DMA channel 9 transfer complete dma_ch10_isr, // 26 DMA channel 10 transfer complete dma_ch11_isr, // 27 DMA channel 11 transfer complete dma_ch12_isr, // 28 DMA channel 12 transfer complete dma_ch13_isr, // 29 DMA channel 13 transfer complete dma_ch14_isr, // 30 DMA channel 14 transfer complete dma_ch15_isr, // 31 DMA channel 15 transfer complete dma_error_isr, // 32 DMA error interrupt channel mcm_isr, // 33 MCM flash_cmd_isr, // 34 Flash Memory Command complete flash_error_isr, // 35 Flash Read collision low_voltage_isr, // 36 Low-voltage detect/warning wakeup_isr, // 37 Low Leakage Wakeup watchdog_isr, // 38 Both EWM and WDOG interrupt randnum_isr, // 39 Random Number Generator i2c0_isr, // 40 I2C0 i2c1_isr, // 41 I2C1 spi0_isr, // 42 SPI0 spi1_isr, // 43 SPI1 i2s0_tx_isr, // 44 I2S0 Transmit i2s0_rx_isr, // 45 I2S0 Receive unused_isr, // 46 -- uart0_status_isr, // 47 UART0 status uart0_error_isr, // 48 UART0 error uart1_status_isr, // 49 UART1 status uart1_error_isr, // 50 UART1 error uart2_status_isr, // 51 UART2 status uart2_error_isr, // 52 UART2 error uart3_status_isr, // 53 UART3 status uart3_error_isr, // 54 UART3 error adc0_isr, // 55 ADC0 cmp0_isr, // 56 CMP0 cmp1_isr, // 57 CMP1 ftm0_isr, // 58 FTM0 ftm1_isr, // 59 FTM1 ftm2_isr, // 60 FTM2 cmt_isr, // 61 CMT rtc_alarm_isr, // 62 RTC Alarm interrupt rtc_seconds_isr, // 63 RTC Seconds interrupt pit0_isr, // 64 PIT Channel 0 pit1_isr, // 65 PIT Channel 1 pit2_isr, // 66 PIT Channel 2 pit3_isr, // 67 PIT Channel 3 pdb_isr, // 68 PDB Programmable Delay Block usb_isr, // 69 USB OTG usb_charge_isr, // 70 USB Charger Detect unused_isr, // 71 -- dac0_isr, // 72 DAC0 mcg_isr, // 73 MCG lptmr_isr, // 74 Low Power Timer porta_isr, // 75 Pin detect (Port A) portb_isr, // 76 Pin detect (Port B) portc_isr, // 77 Pin detect (Port C) portd_isr, // 78 Pin detect (Port D) porte_isr, // 79 Pin detect (Port E) software_isr, // 80 Software interrupt spi2_isr, // 81 SPI2 uart4_status_isr, // 82 UART4 status uart4_error_isr, // 83 UART4 error unused_isr, // 84 -- unused_isr, // 85 -- cmp2_isr, // 86 CMP2 ftm3_isr, // 87 FTM3 dac1_isr, // 88 DAC1 adc1_isr, // 89 ADC1 i2c2_isr, // 90 I2C2 can0_message_isr, // 91 CAN OR'ed Message buffer (0-15) can0_bus_off_isr, // 92 CAN Bus Off can0_error_isr, // 93 CAN Error can0_tx_warn_isr, // 94 CAN Transmit Warning can0_rx_warn_isr, // 95 CAN Receive Warning can0_wakeup_isr, // 96 CAN Wake Up sdhc_isr, // 97 SDHC enet_timer_isr, // 98 Ethernet IEEE1588 Timers enet_tx_isr, // 99 Ethernet Transmit enet_rx_isr, // 100 Ethernet Receive enet_error_isr, // 101 Ethernet Error lpuart0_status_isr, // 102 LPUART tsi0_isr, // 103 TSI0 tpm1_isr, // 104 FTM1 tpm2_isr, // 105 FTM2 usbhs_phy_isr, // 106 USB-HS Phy i2c3_isr, // 107 I2C3 cmp3_isr, // 108 CMP3 usbhs_isr, // 109 USB-HS can1_message_isr, // 110 CAN OR'ed Message buffer (0-15) can1_bus_off_isr, // 111 CAN Bus Off can1_error_isr, // 112 CAN Error can1_tx_warn_isr, // 113 CAN Transmit Warning can1_rx_warn_isr, // 114 CAN Receive Warning can1_wakeup_isr, // 115 CAN Wake Up #endif }; __attribute__ ((section(".flashconfig"), used)) const uint8_t flashconfigbytes[16] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, FSEC, FOPT, 0xFF, 0xFF }; // Automatically initialize the RTC. When the build defines the compile // time, and the user has added a crystal, the RTC will automatically // begin at the time of the first upload. #ifndef TIME_T #define TIME_T 1349049600 // default 1 Oct 2012 (never used, Arduino sets this) #endif extern void *__rtc_localtime; // Arduino build process sets this extern void rtc_set(unsigned long t); static void startup_default_early_hook(void) { #if defined(KINETISK) WDOG_STCTRLH = WDOG_STCTRLH_ALLOWUPDATE; #elif defined(KINETISL) SIM_COPC = 0; // disable the watchdog #endif } static void startup_default_late_hook(void) {} void startup_early_hook(void) __attribute__ ((weak, alias("startup_default_early_hook"))); void startup_late_hook(void) __attribute__ ((weak, alias("startup_default_late_hook"))); #if defined(__PURE_CODE__) || !defined(__OPTIMIZE__) || defined(__clang__) // cases known to compile too large for 0-0x400 memory region __attribute__ ((optimize("-Os"))) #else // hopefully all others fit into startup section (below 0x400) __attribute__ ((section(".startup"),optimize("-Os"))) #endif void ResetHandler(void) { uint32_t *src = &_etext; uint32_t *dest = &_sdata; unsigned int i; #if F_CPU <= 2000000 volatile int n; #endif //volatile int count; #ifdef KINETISK WDOG_UNLOCK = WDOG_UNLOCK_SEQ1; WDOG_UNLOCK = WDOG_UNLOCK_SEQ2; __asm__ volatile ("nop"); __asm__ volatile ("nop"); #endif // programs using the watchdog timer or needing to initialize hardware as // early as possible can implement startup_early_hook() startup_early_hook(); // enable clocks to always-used peripherals #if defined(__MK20DX128__) SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL; #elif defined(__MK20DX256__) SIM_SCGC3 = SIM_SCGC3_ADC1 | SIM_SCGC3_FTM2; SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL; #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) SIM_SCGC3 = SIM_SCGC3_ADC1 | SIM_SCGC3_FTM2 | SIM_SCGC3_FTM3; SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL; //PORTC_PCR5 = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE; //GPIOC_PDDR |= (1<<5); //GPIOC_PSOR = (1<<5); //while (1); #elif defined(__MKL26Z64__) SIM_SCGC4 = SIM_SCGC4_USBOTG | 0xF0000030; SIM_SCGC5 = 0x00003F82; // clocks active to all GPIO SIM_SCGC6 = SIM_SCGC6_ADC0 | SIM_SCGC6_TPM0 | SIM_SCGC6_TPM1 | SIM_SCGC6_TPM2 | SIM_SCGC6_FTFL; #endif #if defined(__MK64FX512__) || defined(__MK66FX1M0__) SCB_CPACR = 0x00F00000; #endif #if defined(__MK66FX1M0__) LMEM_PCCCR = 0x85000003; #endif #if 0 // testing only, enable ser_print SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1); MCG_C4 |= MCG_C4_DMX32 | MCG_C4_DRST_DRS(1); SIM_SOPT2 = SIM_SOPT2_UART0SRC(1) | SIM_SOPT2_TPMSRC(1); SIM_SCGC4 |= 0x00000400; UART0_BDH = 0; UART0_BDL = 26; // 115200 at 48 MHz UART0_C2 = UART_C2_TE; PORTB_PCR17 = PORT_PCR_MUX(3); #endif #ifdef KINETISK // if the RTC oscillator isn't enabled, get it started early if (!(RTC_CR & RTC_CR_OSCE)) { RTC_SR = 0; RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE; } #endif // release I/O pins hold, if we woke up from VLLS mode if (PMC_REGSC & PMC_REGSC_ACKISO) PMC_REGSC |= PMC_REGSC_ACKISO; // since this is a write once register, make it visible to all F_CPU's // so we can into other sleep modes in the future at any speed #if defined(__MK66FX1M0__) SMC_PMPROT = SMC_PMPROT_AHSRUN | SMC_PMPROT_AVLP | SMC_PMPROT_ALLS | SMC_PMPROT_AVLLS; #else SMC_PMPROT = SMC_PMPROT_AVLP | SMC_PMPROT_ALLS | SMC_PMPROT_AVLLS; #endif // TODO: do this while the PLL is waiting to lock.... while (dest < &_edata) *dest++ = *src++; dest = &_sbss; while (dest < &_ebss) *dest++ = 0; // default all interrupts to medium priority level for (i=0; i < NVIC_NUM_INTERRUPTS + 16; i++) _VectorsRam[i] = _VectorsFlash[i]; for (i=0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_PRIORITY(i, 128); SCB_VTOR = (uint32_t)_VectorsRam; // use vector table in RAM // hardware always starts in FEI mode // C1[CLKS] bits are written to 00 // C1[IREFS] bit is written to 1 // C6[PLLS] bit is written to 0 // MCG_SC[FCDIV] defaults to divide by two for internal ref clock // I tried changing MSG_SC to divide by 1, it didn't work for me #if F_CPU <= 2000000 #if defined(KINETISK) MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_IREFS; #elif defined(KINETISL) // use the internal oscillator MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_IREFS | MCG_C1_IRCLKEN; #endif // wait for MCGOUT to use oscillator while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(1)) ; for (n=0; n<10; n++) ; // TODO: why do we get 2 mA extra without this delay? MCG_C2 = MCG_C2_IRCS; while (!(MCG_S & MCG_S_IRCST)) ; // now in FBI mode: // C1[CLKS] bits are written to 01 // C1[IREFS] bit is written to 1 // C6[PLLS] is written to 0 // C2[LP] is written to 0 MCG_C2 = MCG_C2_IRCS | MCG_C2_LP; // now in BLPI mode: // C1[CLKS] bits are written to 01 // C1[IREFS] bit is written to 1 // C6[PLLS] bit is written to 0 // C2[LP] bit is written to 1 #else #if defined(KINETISK) // enable capacitors for crystal OSC0_CR = OSC_SC8P | OSC_SC2P | OSC_ERCLKEN; #elif defined(KINETISL) // enable capacitors for crystal OSC0_CR = OSC_SC8P | OSC_SC2P | OSC_ERCLKEN; #endif // enable osc, 8-32 MHz range, low power mode MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS; // switch to crystal as clock source, FLL input = 16 MHz / 512 MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(4); // wait for crystal oscillator to begin while ((MCG_S & MCG_S_OSCINIT0) == 0) ; // wait for FLL to use oscillator while ((MCG_S & MCG_S_IREFST) != 0) ; // wait for MCGOUT to use oscillator while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ; // now in FBE mode // C1[CLKS] bits are written to 10 // C1[IREFS] bit is written to 0 // C1[FRDIV] must be written to divide xtal to 31.25-39 kHz // C6[PLLS] bit is written to 0 // C2[LP] is written to 0 #if F_CPU <= 16000000 // if the crystal is fast enough, use it directly (no FLL or PLL) MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS | MCG_C2_LP; // BLPE mode: // C1[CLKS] bits are written to 10 // C1[IREFS] bit is written to 0 // C2[LP] bit is written to 1 #else // if we need faster than the crystal, turn on the PLL #if defined(__MK66FX1M0__) #if F_CPU > 120000000 SMC_PMCTRL = SMC_PMCTRL_RUNM(3); // enter HSRUN mode while (SMC_PMSTAT != SMC_PMSTAT_HSRUN) ; // wait for HSRUN #endif #if F_CPU == 240000000 MCG_C5 = MCG_C5_PRDIV0(0); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(14); #elif F_CPU == 216000000 MCG_C5 = MCG_C5_PRDIV0(0); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(11); #elif F_CPU == 192000000 MCG_C5 = MCG_C5_PRDIV0(0); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(8); #elif F_CPU == 180000000 MCG_C5 = MCG_C5_PRDIV0(1); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(29); #elif F_CPU == 168000000 MCG_C5 = MCG_C5_PRDIV0(0); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(5); #elif F_CPU == 144000000 MCG_C5 = MCG_C5_PRDIV0(0); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(2); #elif F_CPU == 120000000 MCG_C5 = MCG_C5_PRDIV0(1); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(14); #elif F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000 MCG_C5 = MCG_C5_PRDIV0(1); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(8); #elif F_CPU == 72000000 MCG_C5 = MCG_C5_PRDIV0(1); MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(2); #elif F_CPU > 16000000 #error "MK66FX1M0 does not support this clock speed yet...." #endif #else #if F_CPU == 72000000 MCG_C5 = MCG_C5_PRDIV0(5); // config PLL input for 16 MHz Crystal / 6 = 2.667 Hz #else MCG_C5 = MCG_C5_PRDIV0(3); // config PLL input for 16 MHz Crystal / 4 = 4 MHz #endif #if F_CPU == 168000000 MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(18); // config PLL for 168 MHz output #elif F_CPU == 144000000 MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(12); // config PLL for 144 MHz output #elif F_CPU == 120000000 MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(6); // config PLL for 120 MHz output #elif F_CPU == 72000000 MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(3); // config PLL for 72 MHz output #elif F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000 MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0); // config PLL for 96 MHz output #elif F_CPU > 16000000 #error "This clock speed isn't supported..." #endif #endif // wait for PLL to start using xtal as its input while (!(MCG_S & MCG_S_PLLST)) ; // wait for PLL to lock while (!(MCG_S & MCG_S_LOCK0)) ; // now we're in PBE mode #endif #endif // now program the clock dividers #if F_CPU == 240000000 // config divisors: 240 MHz core, 60 MHz bus, 30 MHz flash, USB = 240 / 5 // TODO: gradual ramp-up for HSRUN mode #if F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(7); #elif F_BUS == 80000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(7); #elif F_BUS == 120000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(7); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(4); #elif F_CPU == 216000000 // config divisors: 216 MHz core, 54 MHz bus, 27 MHz flash, USB = IRC48M // TODO: gradual ramp-up for HSRUN mode #if F_BUS == 54000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(7); #elif F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(7); #elif F_BUS == 108000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(7); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0); #elif F_CPU == 192000000 // config divisors: 192 MHz core, 48 MHz bus, 27.4 MHz flash, USB = 192 / 4 // TODO: gradual ramp-up for HSRUN mode #if F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(6); #elif F_BUS == 64000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(6); #elif F_BUS == 96000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(6); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(3); #elif F_CPU == 180000000 // config divisors: 180 MHz core, 60 MHz bus, 25.7 MHz flash, USB = IRC48M #if F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(6); #elif F_BUS == 90000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(6); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0); #elif F_CPU == 168000000 // config divisors: 168 MHz core, 56 MHz bus, 28 MHz flash, USB = 168 * 2 / 7 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(5); SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(6) | SIM_CLKDIV2_USBFRAC; #elif F_CPU == 144000000 // config divisors: 144 MHz core, 48 MHz bus, 28.8 MHz flash, USB = 144 / 3 #if F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(4); #elif F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(4); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2); #elif F_CPU == 120000000 // config divisors: 120 MHz core, 60 MHz bus, 24 MHz flash, USB = 128 * 2 / 5 #if F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(4); #elif F_BUS == 120000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(4); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(4) | SIM_CLKDIV2_USBFRAC; #elif F_CPU == 96000000 // config divisors: 96 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2 #if F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(3); #elif F_BUS == 96000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(3); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); #elif F_CPU == 72000000 // config divisors: 72 MHz core, 36 MHz bus, 24 MHz flash, USB = 72 * 2 / 3 #if F_BUS == 36000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(2); #elif F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(2); #else #error "This F_CPU & F_BUS combination is not supported" #endif SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC; #elif F_CPU == 48000000 // config divisors: 48 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2 #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(3); SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); #elif defined(KINETISL) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV4(1); #endif #elif F_CPU == 24000000 // config divisors: 24 MHz core, 24 MHz bus, 24 MHz flash, USB = 96 / 2 #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(3); SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); #elif defined(KINETISL) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV4(0); #endif #elif F_CPU == 16000000 // config divisors: 16 MHz core, 16 MHz bus, 16 MHz flash #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV3(0) | SIM_CLKDIV1_OUTDIV4(0); #elif defined(KINETISL) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(0); #endif #elif F_CPU == 8000000 // config divisors: 8 MHz core, 8 MHz bus, 8 MHz flash #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(1); #elif defined(KINETISL) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV4(0); #endif #elif F_CPU == 4000000 // config divisors: 4 MHz core, 4 MHz bus, 2 MHz flash // since we are running from external clock 16MHz // fix outdiv too -> cpu 16/4, bus 16/4, flash 16/4 // here we can go into vlpr? // config divisors: 4 MHz core, 4 MHz bus, 4 MHz flash #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(3); #elif defined(KINETISL) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV4(0); #endif #elif F_CPU == 2000000 // since we are running from the fast internal reference clock 4MHz // but is divided down by 2 so we actually have a 2MHz, MCG_SC[FCDIV] default is 2 // fix outdiv -> cpu 2/1, bus 2/1, flash 2/2 // config divisors: 2 MHz core, 2 MHz bus, 1 MHz flash #if defined(KINETISK) SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(1); #elif defined(KINETISL) // config divisors: 2 MHz core, 1 MHz bus, 1 MHz flash SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1); #endif #else #error "Error, F_CPU must be 192, 180, 168, 144, 120, 96, 72, 48, 24, 16, 8, 4, or 2 MHz" #endif #if F_CPU > 16000000 // switch to PLL as clock source, FLL input = 16 MHz / 512 MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4); // wait for PLL clock to be used while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ; // now we're in PEE mode // USB uses PLL clock, trace is CPU clock, CLKOUT=OSCERCLK0 #if defined(KINETISK) #if F_CPU == 216000000 || F_CPU == 180000000 SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_IRC48SEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6); #else SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6); #endif #elif defined(KINETISL) SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_CLKOUTSEL(6) | SIM_SOPT2_UART0SRC(1) | SIM_SOPT2_TPMSRC(1); #endif #else #if F_CPU == 2000000 SIM_SOPT2 = SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(4) | SIM_SOPT2_UART0SRC(3); #else SIM_SOPT2 = SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6) | SIM_SOPT2_UART0SRC(2); #endif #endif #if F_CPU <= 2000000 // since we are not going into "stop mode" i removed it SMC_PMCTRL = SMC_PMCTRL_RUNM(2); // VLPR mode :-) #endif // initialize the SysTick counter SYST_RVR = (F_CPU / 1000) - 1; SYST_CVR = 0; SYST_CSR = SYST_CSR_CLKSOURCE | SYST_CSR_TICKINT | SYST_CSR_ENABLE; SCB_SHPR3 = 0x20200000; // Systick = priority 32 //init_pins(); __enable_irq(); _init_Teensyduino_internal_(); #if defined(KINETISK) // RTC initialization if (RTC_SR & RTC_SR_TIF) { // this code will normally run on a power-up reset // when VBAT has detected a power-up. Normally our // compiled-in time will be stale. Write a special // flag into the VBAT register file indicating the // RTC is set with known-stale time and should be // updated when fresh time is known. #if ARDUINO >= 10600 rtc_set((uint32_t)&__rtc_localtime); #else rtc_set(TIME_T); #endif *(uint32_t *)0x4003E01C = 0x5A94C3A5; } if ((RCM_SRS0 & RCM_SRS0_PIN) && (*(uint32_t *)0x4003E01C == 0x5A94C3A5)) { // this code should run immediately after an upload // where the Teensy Loader causes the Mini54 to reset. // Our compiled-in time will be very fresh, so set // the RTC with this, and clear the VBAT resister file // data so we don't mess with the time after it's been // set well. #if ARDUINO >= 10600 rtc_set((uint32_t)&__rtc_localtime); #else rtc_set(TIME_T); #endif *(uint32_t *)0x4003E01C = 0; } #endif __libc_init_array(); startup_late_hook(); main(); while (1) ; } char *__brkval = (char *)&_ebss; #ifndef STACK_MARGIN #if defined(__MKL26Z64__) #define STACK_MARGIN 512 #elif defined(__MK20DX128__) #define STACK_MARGIN 1024 #elif defined(__MK20DX256__) #define STACK_MARGIN 4096 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) #define STACK_MARGIN 8192 #endif #endif #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" void * _sbrk(int incr) { char *prev, *stack; prev = __brkval; if (incr != 0) { __asm__ volatile("mov %0, sp" : "=r" (stack) ::); if (prev + incr >= stack - STACK_MARGIN) { errno = ENOMEM; return (void *)-1; } __brkval = prev + incr; } return prev; } __attribute__((weak)) int _read(int file, char *ptr, int len) { return 0; } __attribute__((weak)) int _close(int fd) { return -1; } #include __attribute__((weak)) int _fstat(int fd, struct stat *st) { st->st_mode = S_IFCHR; return 0; } __attribute__((weak)) int _isatty(int fd) { return 1; } __attribute__((weak)) int _lseek(int fd, long long offset, int whence) { return -1; } __attribute__((weak)) void _exit(int status) { while (1); } __attribute__((weak)) void __cxa_pure_virtual() { while (1); } __attribute__((weak)) int __cxa_guard_acquire (char *g) { return !(*g); } __attribute__((weak)) void __cxa_guard_release(char *g) { *g = 1; } #pragma GCC diagnostic pop int nvic_execution_priority(void) { uint32_t priority=256; uint32_t primask, faultmask, basepri, ipsr; // full algorithm in ARM DDI0403D, page B1-639 // this isn't quite complete, but hopefully good enough __asm__ volatile("mrs %0, faultmask\n" : "=r" (faultmask)::); if (faultmask) return -1; __asm__ volatile("mrs %0, primask\n" : "=r" (primask)::); if (primask) return 0; __asm__ volatile("mrs %0, ipsr\n" : "=r" (ipsr)::); if (ipsr) { if (ipsr < 16) priority = 0; // could be non-zero else priority = NVIC_GET_PRIORITY(ipsr - 16); } __asm__ volatile("mrs %0, basepri\n" : "=r" (basepri)::); if (basepri > 0 && basepri < priority) priority = basepri; return priority; } #if defined(HAS_KINETIS_HSRUN) && F_CPU > 120000000 int kinetis_hsrun_disable(void) { if (SMC_PMSTAT == SMC_PMSTAT_HSRUN) { // First, reduce the CPU clock speed, but do not change // the peripheral speed (F_BUS). Serial1 & Serial2 baud // rates will be impacted, but most other peripherals // will continue functioning at the same speed. #if F_CPU == 240000000 && F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok #elif F_CPU == 240000000 && F_BUS == 80000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok #elif F_CPU == 240000000 && F_BUS == 120000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok #elif F_CPU == 216000000 && F_BUS == 54000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok #elif F_CPU == 216000000 && F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok #elif F_CPU == 216000000 && F_BUS == 108000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok #elif F_CPU == 192000000 && F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok #elif F_CPU == 192000000 && F_BUS == 64000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok #elif F_CPU == 192000000 && F_BUS == 96000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok #elif F_CPU == 180000000 && F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok #elif F_CPU == 180000000 && F_BUS == 90000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok #elif F_CPU == 168000000 && F_BUS == 56000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok #elif F_CPU == 144000000 && F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok #elif F_CPU == 144000000 && F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok #else return 0; #endif // Then turn off HSRUN mode SMC_PMCTRL = SMC_PMCTRL_RUNM(0); while (SMC_PMSTAT == SMC_PMSTAT_HSRUN) ; // wait return 1; } return 0; } int kinetis_hsrun_enable(void) { if (SMC_PMSTAT == SMC_PMSTAT_RUN) { // Turn HSRUN mode on SMC_PMCTRL = SMC_PMCTRL_RUNM(3); while (SMC_PMSTAT != SMC_PMSTAT_HSRUN) {;} // wait // Then configure clock for full speed #if F_CPU == 240000000 && F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); #elif F_CPU == 240000000 && F_BUS == 80000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); #elif F_CPU == 240000000 && F_BUS == 120000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); #elif F_CPU == 216000000 && F_BUS == 54000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); #elif F_CPU == 216000000 && F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); #elif F_CPU == 216000000 && F_BUS == 108000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); #elif F_CPU == 192000000 && F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6); #elif F_CPU == 192000000 && F_BUS == 64000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); #elif F_CPU == 192000000 && F_BUS == 96000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); #elif F_CPU == 180000000 && F_BUS == 60000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); #elif F_CPU == 180000000 && F_BUS == 90000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); #elif F_CPU == 168000000 && F_BUS == 56000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5); #elif F_CPU == 144000000 && F_BUS == 48000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4); #elif F_CPU == 144000000 && F_BUS == 72000000 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4); #else return 0; #endif return 1; } return 0; } #endif // HAS_KINETIS_HSRUN && F_CPU > 120000000