/* USB API for Teensy USB Development Board * http://www.pjrc.com/teensy/teensyduino.html * Copyright (c) 2008 PJRC.COM, LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <avr/io.h> #include <avr/pgmspace.h> #include <stdint.h> #include "usb_common.h" #include "usb_private.h" #include "usb_api.h" #include "keylayouts.h" #include "wiring.h" // Step #1, decode UTF8 to Unicode code points // #if ARDUINO >= 100 size_t usb_keyboard_class::write(uint8_t c) #else void usb_keyboard_class::write(uint8_t c) #endif { if (c < 0x80) { // single byte encoded, 0x00 to 0x7F utf8_state = 0; write_unicode(c); } else if (c < 0xC0) { // 2nd, 3rd or 4th byte, 0x80 to 0xBF c &= 0x3F; if (utf8_state == 1) { utf8_state = 0; write_unicode(unicode_wchar | c); } else if (utf8_state == 2) { unicode_wchar |= ((uint16_t)c << 6); utf8_state = 1; } } else if (c < 0xE0) { // begin 2 byte sequence, 0xC2 to 0xDF // or illegal 2 byte sequence, 0xC0 to 0xC1 unicode_wchar = (uint16_t)(c & 0x1F) << 6; utf8_state = 1; } else if (c < 0xF0) { // begin 3 byte sequence, 0xE0 to 0xEF unicode_wchar = (uint16_t)(c & 0x0F) << 12; utf8_state = 2; } else { // begin 4 byte sequence (not supported), 0xF0 to 0xF4 // or illegal, 0xF5 to 0xFF utf8_state = 255; } #if ARDUINO >= 100 return 1; #endif } // Step #2: translate Unicode code point to keystroke sequence // KEYCODE_TYPE usb_keyboard_class::unicode_to_keycode(uint16_t cpoint) { // Unicode code points beyond U+FFFF are not supported // technically this input should probably be called UCS-2 if (cpoint < 32) { if (cpoint == 10) return KEY_ENTER & 0x3FFF; return 0; } if (cpoint < 128) { if (sizeof(KEYCODE_TYPE) == 1) { return pgm_read_byte(keycodes_ascii + (cpoint - 0x20)); } else if (sizeof(KEYCODE_TYPE) == 2) { return pgm_read_word(keycodes_ascii + (cpoint - 0x20)); } return 0; } #ifdef ISO_8859_1_A0 if (cpoint <= 0xA0) return 0; if (cpoint < 0x100) { if (sizeof(KEYCODE_TYPE) == 1) { return pgm_read_byte(keycodes_iso_8859_1 + (cpoint - 0xA0)); } else if (sizeof(KEYCODE_TYPE) == 2) { return pgm_read_word(keycodes_iso_8859_1 + (cpoint - 0xA0)); } return 0; } #endif //#ifdef UNICODE_20AC //if (cpoint == 0x20AC) return UNICODE_20AC & 0x3FFF; //#endif #ifdef KEYCODE_EXTRA00 if (cpoint == UNICODE_EXTRA00) return KEYCODE_EXTRA00 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA01 if (cpoint == UNICODE_EXTRA01) return KEYCODE_EXTRA01 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA02 if (cpoint == UNICODE_EXTRA02) return KEYCODE_EXTRA02 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA03 if (cpoint == UNICODE_EXTRA03) return KEYCODE_EXTRA03 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA04 if (cpoint == UNICODE_EXTRA04) return KEYCODE_EXTRA04 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA05 if (cpoint == UNICODE_EXTRA05) return KEYCODE_EXTRA05 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA06 if (cpoint == UNICODE_EXTRA06) return KEYCODE_EXTRA06 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA07 if (cpoint == UNICODE_EXTRA07) return KEYCODE_EXTRA07 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA08 if (cpoint == UNICODE_EXTRA08) return KEYCODE_EXTRA08 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA09 if (cpoint == UNICODE_EXTRA09) return KEYCODE_EXTRA09 & 0x3FFF; #endif return 0; } // Step #3: execute keystroke sequence // void usb_keyboard_class::write_keycode(KEYCODE_TYPE keycode) { if (!keycode) return; #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) write_key(deadkeycode); #endif write_key(keycode); } KEYCODE_TYPE usb_keyboard_class::deadkey_to_keycode(KEYCODE_TYPE keycode) { #ifdef DEADKEYS_MASK keycode &= DEADKEYS_MASK; if (keycode == 0) return 0; #ifdef ACUTE_ACCENT_BITS if (keycode == ACUTE_ACCENT_BITS) return DEADKEY_ACUTE_ACCENT; #endif #ifdef CEDILLA_BITS if (keycode == CEDILLA_BITS) return DEADKEY_CEDILLA; #endif #ifdef CIRCUMFLEX_BITS if (keycode == CIRCUMFLEX_BITS) return DEADKEY_CIRCUMFLEX; #endif #ifdef DIAERESIS_BITS if (keycode == DIAERESIS_BITS) return DEADKEY_DIAERESIS; #endif #ifdef GRAVE_ACCENT_BITS if (keycode == GRAVE_ACCENT_BITS) return DEADKEY_GRAVE_ACCENT; #endif #ifdef TILDE_BITS if (keycode == TILDE_BITS) return DEADKEY_TILDE; #endif #ifdef RING_ABOVE_BITS if (keycode == RING_ABOVE_BITS) return DEADKEY_RING_ABOVE; #endif #endif // DEADKEYS_MASK return 0; } // Step #4: do each keystroke // void usb_keyboard_class::write_key(KEYCODE_TYPE keycode) { keyboard_report_data[0] = keycode_to_modifier(keycode); keyboard_report_data[1] = 0; keyboard_report_data[2] = keycode_to_key(keycode); keyboard_report_data[3] = 0; keyboard_report_data[4] = 0; keyboard_report_data[5] = 0; keyboard_report_data[6] = 0; keyboard_report_data[7] = 0; send_now(); keyboard_report_data[0] = 0; keyboard_report_data[2] = 0; send_now(); } uint8_t usb_keyboard_class::keycode_to_modifier(KEYCODE_TYPE keycode) { uint8_t modifier=0; #ifdef SHIFT_MASK if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT; #endif #ifdef ALTGR_MASK if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT; #endif #ifdef RCTRL_MASK if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL; #endif return modifier; } uint8_t usb_keyboard_class::keycode_to_key(KEYCODE_TYPE keycode) { uint8_t key = keycode & 0x3F; #ifdef KEY_NON_US_100 if (key == KEY_NON_US_100) key = 100; #endif return key; } void usb_keyboard_class::set_modifier(uint8_t c) { keyboard_report_data[0] = c; } void usb_keyboard_class::set_key1(uint8_t c) { keyboard_report_data[2] = c; } void usb_keyboard_class::set_key2(uint8_t c) { keyboard_report_data[3] = c; } void usb_keyboard_class::set_key3(uint8_t c) { keyboard_report_data[4] = c; } void usb_keyboard_class::set_key4(uint8_t c) { keyboard_report_data[5] = c; } void usb_keyboard_class::set_key5(uint8_t c) { keyboard_report_data[6] = c; } void usb_keyboard_class::set_key6(uint8_t c) { keyboard_report_data[7] = c; } void usb_keyboard_class::set_media(uint8_t c) { keyboard_report_data[1] = c; } void usb_keyboard_class::send_now(void) { uint8_t intr_state, timeout; if (!usb_configuration) return; intr_state = SREG; cli(); UENUM = KEYBOARD_ENDPOINT; timeout = UDFNUML + 50; while (1) { // are we ready to transmit? if (UEINTX & (1<<RWAL)) break; SREG = intr_state; // has the USB gone offline? if (!usb_configuration) return; // have we waited too long? if (UDFNUML == timeout) return; // get ready to try checking again intr_state = SREG; cli(); UENUM = KEYBOARD_ENDPOINT; } UEDATX = keyboard_report_data[0]; UEDATX = keyboard_report_data[1]; UEDATX = keyboard_report_data[2]; UEDATX = keyboard_report_data[3]; UEDATX = keyboard_report_data[4]; UEDATX = keyboard_report_data[5]; UEDATX = keyboard_report_data[6]; UEDATX = keyboard_report_data[7]; UEINTX = 0x3A; keyboard_idle_count = 0; SREG = intr_state; } void usb_keyboard_class::press(uint16_t n) { uint8_t key, mod, msb, modrestore=0; msb = n >> 8; if (msb >= 0xC2 && msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0x80) { presskey(0, n); return; } else if (msb == 0x40) { presskey(n, 0); return; } KEYCODE_TYPE keycode = unicode_to_keycode(n); if (!keycode) return; #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) { modrestore = keyboard_report_data[0]; if (modrestore) { keyboard_report_data[0] = 0; send_now(); } // TODO: test if operating systems recognize // deadkey sequences when other keys are held mod = keycode_to_modifier(deadkeycode); key = keycode_to_key(deadkeycode); presskey(key, mod); releasekey(key, mod); } #endif mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); presskey(key, mod | modrestore); } void usb_keyboard_class::release(uint16_t n) { uint8_t key, mod, msb; msb = n >> 8; if (msb >= 0xC2 && msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0x80) { releasekey(0, n); return; } else if (msb == 0x40) { releasekey(n, 0); return; } KEYCODE_TYPE keycode = unicode_to_keycode(n); if (!keycode) return; mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); releasekey(key, mod); } void usb_keyboard_class::presskey(uint8_t key, uint8_t modifier) { bool send_required = false; uint8_t i; if (modifier) { if ((keyboard_report_data[0] & modifier) != modifier) { keyboard_report_data[0] |= modifier; send_required = true; } } if (key) { for (i=2; i < 8; i++) { if (keyboard_report_data[i] == key) goto end; } for (i=2; i < 8; i++) { if (keyboard_report_data[i] == 0) { keyboard_report_data[i] = key; send_required = true; goto end; } } } end: if (send_required) send_now(); } void usb_keyboard_class::releasekey(uint8_t key, uint8_t modifier) { bool send_required = false; uint8_t i; if (modifier) { if ((keyboard_report_data[0] & modifier) != 0) { keyboard_report_data[0] &= ~modifier; send_required = true; } } if (key) { for (i=2; i < 8; i++) { if (keyboard_report_data[i] == key) { keyboard_report_data[i] = 0; send_required = true; } } } if (send_required) send_now(); } void usb_keyboard_class::releaseAll(void) { uint8_t i, anybits; anybits = keyboard_report_data[0]; for (i=2; i < 8; i++) { anybits |= keyboard_report_data[i]; keyboard_report_data[i] = 0; } if (!anybits) return; keyboard_report_data[0] = 0; send_now(); } static volatile uint8_t prev_byte=0; void usb_serial_class::begin(long speed) { // make sure USB is initialized usb_init(); uint16_t begin_wait = (uint16_t)millis(); while (1) { // wait for the host to finish enumeration if (usb_configuration) { delay(250); // a little time for host to load a driver return; } // or for suspend mode (powered without USB) if (usb_suspended) { uint16_t begin_suspend = (uint16_t)millis(); while (usb_suspended) { // must remain suspended for a while, because // normal USB enumeration causes brief suspend // states, typically under 0.1 second if ((uint16_t)millis() - begin_suspend > 250) { return; } } } // ... or a timout (powered by a USB power adaptor that // wiggles the data lines to keep a USB device charging) if ((uint16_t)millis() - begin_wait > 2500) return; } prev_byte = 0; } void usb_serial_class::end() { usb_shutdown(); delay(25); } // number of bytes available in the receive buffer int usb_serial_class::available() { uint8_t c; c = prev_byte; // assume 1 byte static volatile access is atomic if (c) return 1; c = readnext(); if (c) { prev_byte = c; return 1; } return 0; } // get the next character, or -1 if nothing received int usb_serial_class::read() { uint8_t c; c = prev_byte; if (c) { prev_byte = 0; return c; } c = readnext(); if (c) return c; return -1; } int usb_serial_class::peek() { uint8_t c; c = prev_byte; if (c) return c; c = readnext(); if (c) { prev_byte = c; return c; } return -1; } // get the next character, or 0 if nothing uint8_t usb_serial_class::readnext(void) { uint8_t c, intr_state; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); if (!usb_configuration) { SREG = intr_state; return 0; } UENUM = DEBUG_RX_ENDPOINT; try_again: if (!(UEINTX & (1<<RWAL))) { // no packet in buffer SREG = intr_state; return 0; } // take one byte out of the buffer c = UEDATX; if (c == 0) { // if we see a zero, discard it and // discard the rest of this packet UEINTX = 0x6B; goto try_again; } // if this drained the buffer, release it if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B; SREG = intr_state; return c; } // discard any buffered input void usb_serial_class::flush() { uint8_t intr_state; if (usb_configuration) { intr_state = SREG; cli(); UENUM = DEBUG_RX_ENDPOINT; while ((UEINTX & (1<<RWAL))) { UEINTX = 0x6B; } SREG = intr_state; } prev_byte = 0; } // transmit a character. #if ARDUINO >= 100 size_t usb_serial_class::write(uint8_t c) #else void usb_serial_class::write(uint8_t c) #endif { //static uint8_t previous_timeout=0; uint8_t timeout, intr_state; // if we're not online (enumerated and configured), error if (!usb_configuration) goto error; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); UENUM = DEBUG_TX_ENDPOINT; // if we gave up due to timeout before, don't wait again #if 0 if (previous_timeout) { if (!(UEINTX & (1<<RWAL))) { SREG = intr_state; return; } previous_timeout = 0; } #endif // wait for the FIFO to be ready to accept data timeout = UDFNUML + TRANSMIT_TIMEOUT; while (1) { // are we ready to transmit? if (UEINTX & (1<<RWAL)) break; SREG = intr_state; // have we waited too long? This happens if the user // is not running an application that is listening if (UDFNUML == timeout) { //previous_timeout = 1; goto error; } // has the USB gone offline? if (!usb_configuration) goto error; // get ready to try checking again intr_state = SREG; cli(); UENUM = DEBUG_TX_ENDPOINT; } // actually write the byte into the FIFO UEDATX = c; // if this completed a packet, transmit it now! if (!(UEINTX & (1<<RWAL))) { UEINTX = 0x3A; debug_flush_timer = 0; } else { debug_flush_timer = TRANSMIT_FLUSH_TIMEOUT; } SREG = intr_state; #if ARDUINO >= 100 return 1; #endif error: #if ARDUINO >= 100 setWriteError(); return 0; #else return; #endif } // These are Teensy-specific extensions to the Serial object // immediately transmit any buffered output. // This doesn't actually transmit the data - that is impossible! // USB devices only transmit when the host allows, so the best // we can do is release the FIFO buffer for when the host wants it void usb_serial_class::send_now(void) { uint8_t intr_state; intr_state = SREG; cli(); if (debug_flush_timer) { UENUM = DEBUG_TX_ENDPOINT; while ((UEINTX & (1<<RWAL))) { UEDATX = 0; } UEINTX = 0x3A; debug_flush_timer = 0; } SREG = intr_state; } uint32_t usb_serial_class::baud(void) { return ((uint32_t)DEBUG_TX_SIZE * 10000 / DEBUG_TX_INTERVAL); } uint8_t usb_serial_class::stopbits(void) { return 1; } uint8_t usb_serial_class::paritytype(void) { return 0; } uint8_t usb_serial_class::numbits(void) { return 8; } uint8_t usb_serial_class::dtr(void) { return 1; } uint8_t usb_serial_class::rts(void) { return 1; } usb_serial_class::operator bool() { if (usb_configuration) return true; return false; } // Preinstantiate Objects ////////////////////////////////////////////////////// usb_serial_class Serial = usb_serial_class(); usb_keyboard_class Keyboard = usb_keyboard_class(); usb_disk_class Disk = usb_disk_class();