/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "usb_dev.h" #include "usb_keyboard.h" #include "core_pins.h" // for yield() #include "keylayouts.h" //#include "HardwareSerial.h" #include // for memcpy() #ifdef KEYBOARD_INTERFACE // defined by usb_dev.h -> usb_desc.h // which modifier keys are currently pressed // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui uint8_t keyboard_modifier_keys=0; // which media keys are currently pressed uint8_t keyboard_media_keys=0; // which keys are currently pressed, up to 6 keys may be down at once uint8_t keyboard_keys[6]={0,0,0,0,0,0}; // protocol setting from the host. We use exactly the same report // either way, so this variable only stores the setting since we // are required to be able to report which setting is in use. uint8_t keyboard_protocol=1; // the idle configuration, how often we send the report to the // host (ms * 4) even when it hasn't changed uint8_t keyboard_idle_config=125; // count until idle timeout uint8_t keyboard_idle_count=0; // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana volatile uint8_t keyboard_leds=0; static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint); static void write_key(KEYCODE_TYPE keycode); static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode); static uint8_t keycode_to_key(KEYCODE_TYPE keycode); static void usb_keyboard_press_key(uint8_t key, uint8_t modifier); static void usb_keyboard_release_key(uint8_t key, uint8_t modifier); #ifdef DEADKEYS_MASK static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode); #endif // Step #1, decode UTF8 to Unicode code points // void usb_keyboard_write(uint8_t c) { static int utf8_state=0; static uint16_t unicode_wchar=0; if (c < 0x80) { // single byte encoded, 0x00 to 0x7F utf8_state = 0; usb_keyboard_write_unicode(c); } else if (c < 0xC0) { // 2nd, 3rd or 4th byte, 0x80 to 0xBF c &= 0x3F; if (utf8_state == 1) { utf8_state = 0; usb_keyboard_write_unicode(unicode_wchar | c); } else if (utf8_state == 2) { unicode_wchar |= ((uint16_t)c << 6); utf8_state = 1; } } else if (c < 0xE0) { // begin 2 byte sequence, 0xC2 to 0xDF // or illegal 2 byte sequence, 0xC0 to 0xC1 unicode_wchar = (uint16_t)(c & 0x1F) << 6; utf8_state = 1; } else if (c < 0xF0) { // begin 3 byte sequence, 0xE0 to 0xEF unicode_wchar = (uint16_t)(c & 0x0F) << 12; utf8_state = 2; } else { // begin 4 byte sequence (not supported), 0xF0 to 0xF4 // or illegal, 0xF5 to 0xFF utf8_state = 255; } } // Step #2: translate Unicode code point to keystroke sequence // static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint) { // Unicode code points beyond U+FFFF are not supported // technically this input should probably be called UCS-2 if (cpoint < 32) { if (cpoint == 10) return KEY_ENTER & 0x3FFF; if (cpoint == 11) return KEY_TAB & 0x3FFF; return 0; } if (cpoint < 128) { return keycodes_ascii[cpoint - 0x20]; } #ifdef ISO_8859_1_A0 if (cpoint >= 0xA0 && cpoint < 0x100) { return keycodes_iso_8859_1[cpoint - 0xA0]; } #endif //#ifdef UNICODE_20AC //if (cpoint == 0x20AC) return UNICODE_20AC & 0x3FFF; //#endif #ifdef KEYCODE_EXTRA00 if (cpoint == UNICODE_EXTRA00) return KEYCODE_EXTRA00 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA01 if (cpoint == UNICODE_EXTRA01) return KEYCODE_EXTRA01 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA02 if (cpoint == UNICODE_EXTRA02) return KEYCODE_EXTRA02 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA03 if (cpoint == UNICODE_EXTRA03) return KEYCODE_EXTRA03 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA04 if (cpoint == UNICODE_EXTRA04) return KEYCODE_EXTRA04 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA05 if (cpoint == UNICODE_EXTRA05) return KEYCODE_EXTRA05 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA06 if (cpoint == UNICODE_EXTRA06) return KEYCODE_EXTRA06 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA07 if (cpoint == UNICODE_EXTRA07) return KEYCODE_EXTRA07 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA08 if (cpoint == UNICODE_EXTRA08) return KEYCODE_EXTRA08 & 0x3FFF; #endif #ifdef KEYCODE_EXTRA09 if (cpoint == UNICODE_EXTRA09) return KEYCODE_EXTRA09 & 0x3FFF; #endif return 0; } // Step #3: execute keystroke sequence // #ifdef DEADKEYS_MASK static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode) { keycode &= DEADKEYS_MASK; if (keycode == 0) return 0; #ifdef ACUTE_ACCENT_BITS if (keycode == ACUTE_ACCENT_BITS) return DEADKEY_ACUTE_ACCENT; #endif #ifdef CEDILLA_BITS if (keycode == CEDILLA_BITS) return DEADKEY_CEDILLA; #endif #ifdef CIRCUMFLEX_BITS if (keycode == CIRCUMFLEX_BITS) return DEADKEY_CIRCUMFLEX; #endif #ifdef DIAERESIS_BITS if (keycode == DIAERESIS_BITS) return DEADKEY_DIAERESIS; #endif #ifdef GRAVE_ACCENT_BITS if (keycode == GRAVE_ACCENT_BITS) return DEADKEY_GRAVE_ACCENT; #endif #ifdef TILDE_BITS if (keycode == TILDE_BITS) return DEADKEY_TILDE; #endif #ifdef RING_ABOVE_BITS if (keycode == RING_ABOVE_BITS) return DEADKEY_RING_ABOVE; #endif return 0; } #endif void usb_keyboard_write_unicode(uint16_t cpoint) { KEYCODE_TYPE keycode; #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode; #endif keycode = unicode_to_keycode(cpoint); if (keycode) { #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) write_key(deadkeycode); #endif write_key(keycode); } } // Step #4: do each keystroke // static void write_key(KEYCODE_TYPE keycode) { /* uint8_t key, modifier=0; #ifdef SHIFT_MASK if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT; #endif #ifdef ALTGR_MASK if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT; #endif #ifdef RCTRL_MASK if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL; #endif key = keycode & 0x3F; #ifdef KEY_NON_US_100 if (key == KEY_NON_US_100) key = 100; #endif usb_keyboard_press(key, modifier); */ usb_keyboard_press(keycode_to_key(keycode), keycode_to_modifier(keycode)); } static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode) { uint8_t modifier=0; #ifdef SHIFT_MASK if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT; #endif #ifdef ALTGR_MASK if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT; #endif #ifdef RCTRL_MASK if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL; #endif return modifier; } static uint8_t keycode_to_key(KEYCODE_TYPE keycode) { uint8_t key = keycode & 0x3F; #ifdef KEY_NON_US_100 if (key == KEY_NON_US_100) key = 100; #endif return key; } void usb_keyboard_press_keycode(uint16_t n) { uint8_t key, mod, msb, modrestore=0; KEYCODE_TYPE keycode; #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode; #endif msb = n >> 8; if (msb >= 0xC2 && msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0x80) { usb_keyboard_press_key(0, n); return; } else if (msb == 0x40) { usb_keyboard_press_key(n, 0); return; } keycode = unicode_to_keycode(n); if (!keycode) return; #ifdef DEADKEYS_MASK deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) { modrestore = keyboard_modifier_keys; if (modrestore) { keyboard_modifier_keys = 0; send_now(); } // TODO: test if operating systems recognize // deadkey sequences when other keys are held mod = keycode_to_modifier(deadkeycode); key = keycode_to_key(deadkeycode); usb_keyboard_press_key(key, mod); usb_keyboard_release_key(key, mod); } #endif mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); usb_keyboard_press_key(key, mod | modrestore); } void usb_keyboard_release_keycode(uint16_t n) { uint8_t key, mod, msb; msb = n >> 8; if (msb >= 0xC2 && msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0x80) { usb_keyboard_release_key(0, n); return; } else if (msb == 0x40) { usb_keyboard_release_key(n, 0); return; } KEYCODE_TYPE keycode = unicode_to_keycode(n); if (!keycode) return; mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); usb_keyboard_release_key(key, mod); } static void usb_keyboard_press_key(uint8_t key, uint8_t modifier) { int i, send_required = 0; if (modifier) { if ((keyboard_modifier_keys & modifier) != modifier) { keyboard_modifier_keys |= modifier; send_required = 1; } } if (key) { for (i=0; i < 6; i++) { if (keyboard_keys[i] == key) goto end; } for (i=0; i < 6; i++) { if (keyboard_keys[i] == 0) { keyboard_keys[i] = key; send_required = 1; goto end; } } } end: if (send_required) usb_keyboard_send(); } static void usb_keyboard_release_key(uint8_t key, uint8_t modifier) { int i, send_required = 0; if (modifier) { if ((keyboard_modifier_keys & modifier) != 0) { keyboard_modifier_keys &= ~modifier; send_required = 1; } } if (key) { for (i=0; i < 6; i++) { if (keyboard_keys[i] == key) { keyboard_keys[i] = 0; send_required = 1; } } } if (send_required) usb_keyboard_send(); } void usb_keyboard_release_all(void) { uint8_t i, anybits; anybits = keyboard_modifier_keys; keyboard_modifier_keys = 0; for (i=0; i < 6; i++) { anybits |= keyboard_keys[i]; keyboard_keys[i] = 0; } if (anybits) usb_keyboard_send(); } int usb_keyboard_press(uint8_t key, uint8_t modifier) { int r; keyboard_modifier_keys = modifier; keyboard_keys[0] = key; keyboard_keys[1] = 0; keyboard_keys[2] = 0; keyboard_keys[3] = 0; keyboard_keys[4] = 0; keyboard_keys[5] = 0; r = usb_keyboard_send(); if (r) return r; keyboard_modifier_keys = 0; keyboard_keys[0] = 0; return usb_keyboard_send(); } // Maximum number of transmit packets to queue so we don't starve other endpoints for memory #define TX_PACKET_LIMIT 4 static uint8_t transmit_previous_timeout=0; // When the PC isn't listening, how long do we wait before discarding data? #define TX_TIMEOUT_MSEC 50 #if F_CPU == 96000000 #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 596) #elif F_CPU == 48000000 #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 428) #elif F_CPU == 24000000 #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 262) #endif // send the contents of keyboard_keys and keyboard_modifier_keys int usb_keyboard_send(void) { #if 0 serial_print("Send:"); serial_phex(keyboard_modifier_keys); serial_phex(keyboard_keys[0]); serial_phex(keyboard_keys[1]); serial_phex(keyboard_keys[2]); serial_phex(keyboard_keys[3]); serial_phex(keyboard_keys[4]); serial_phex(keyboard_keys[5]); serial_print("\n"); #endif #if 1 uint32_t wait_count=0; usb_packet_t *tx_packet; while (1) { if (!usb_configuration) { return -1; } if (usb_tx_packet_count(KEYBOARD_ENDPOINT) < TX_PACKET_LIMIT) { tx_packet = usb_malloc(); if (tx_packet) break; } if (++wait_count > TX_TIMEOUT || transmit_previous_timeout) { transmit_previous_timeout = 1; return -1; } yield(); } *(tx_packet->buf) = keyboard_modifier_keys; *(tx_packet->buf + 1) = keyboard_media_keys; memcpy(tx_packet->buf + 2, keyboard_keys, 6); tx_packet->len = 8; usb_tx(KEYBOARD_ENDPOINT, tx_packet); #endif return 0; } #endif // KEYBOARD_INTERFACE