#ifndef _SPIFIFO_h_ #define _SPIFIFO_h_ #include "avr_emulation.h" #if F_BUS == 48000000 // SCK baud rate = (fSYS/PBR) x [(1+DBR)/BR] #define HAS_SPIFIFO #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 2) * ((1+1)/2) #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 3) * ((1+1)/2) 33% duty cycle #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(48 / 2) * ((1+0)/2) #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0)) //(48 / 3) * ((1+0)/2) #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1)) //(48 / 2) * ((1+0)/4) #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(1)) //(48 / 3) * ((1+0)/4) #elif F_BUS == 42000000 #define HAS_SPIFIFO #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(42 / 2) * ((1+1)/2) 21 MHz #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(42 / 3) * ((1+1)/2) 33% duty cycle 14 MHz #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(42 / 2) * ((1+0)/2) 10.5 MHz #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0)) //(42 / 3) * ((1+0)/2) 7.5 MHz #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(42 / 7) * ((1+1)/2) 33% duty cycle #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(1)) //(42 / 3) * ((1+0)/4) 3.5 MHz #elif F_BUS == 40000000 #define HAS_SPIFIFO #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 2) * ((1+1)/2) 20 MHz #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 3) * ((1+1)/2) 33% duty cycle 13.3 MHz #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0)) //(40 / 2) * ((1+0)/2) 10 MHz #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 5) * ((1+1)/2) 40% duty cycle #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 7) * ((1+0)/2) 57% duty cycle 5.7 MHz #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0)) //(40 / 5) * ((1+0)/2) #elif F_BUS == 24000000 #define HAS_SPIFIFO #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 3) * ((1+1)/2) 33% duty cycle #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(24 / 2) * ((1+0)/2) #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0)) //(24 / 3) * ((1+0)/2) #else #error #endif // sck = F_BUS / PBR * ((1+DBR)/BR) // PBR = 2, 3, 5, 7 // DBR = 0, 1 -- zero preferred // BR = 2, 4, 6, 8, 16, 32, 64, 128, 256, 512 #ifdef HAS_SPIFIFO #ifndef SPI_MODE0 #define SPI_MODE0 0x00 // CPOL = 0, CPHA = 0 #define SPI_MODE1 0x04 // CPOL = 0, CPHA = 1 #define SPI_MODE2 0x08 // CPOL = 1, CPHA = 0 #define SPI_MODE3 0x0C // CPOL = 1, CPHA = 1 #endif #define SPI_CONTINUE 1 class SPIFIFOclass { public: inline void begin(uint8_t pin, uint32_t speed, uint32_t mode=SPI_MODE0) __attribute__((always_inline)) { uint32_t p, ctar = speed; SIM_SCGC6 |= SIM_SCGC6_SPI0; SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F); if (mode & 0x08) ctar |= SPI_CTAR_CPOL; if (mode & 0x04) { ctar |= SPI_CTAR_CPHA; ctar |= (ctar & 0x0F) << 8; } else { ctar |= (ctar & 0x0F) << 12; } SPI0.CTAR0 = ctar | SPI_CTAR_FMSZ(7); SPI0.CTAR1 = ctar | SPI_CTAR_FMSZ(15); if (pin == 10) { // PTC4 CORE_PIN10_CONFIG = PORT_PCR_MUX(2); p = 0x01; } else if (pin == 2) { // PTD0 CORE_PIN2_CONFIG = PORT_PCR_MUX(2); p = 0x01; } else if (pin == 9) { // PTC3 CORE_PIN9_CONFIG = PORT_PCR_MUX(2); p = 0x02; } else if (pin == 6) { // PTD4 CORE_PIN6_CONFIG = PORT_PCR_MUX(2); p = 0x02; } else if (pin == 20) { // PTD5 CORE_PIN20_CONFIG = PORT_PCR_MUX(2); p = 0x04; } else if (pin == 23) { // PTC2 CORE_PIN23_CONFIG = PORT_PCR_MUX(2); p = 0x04; } else if (pin == 21) { // PTD6 CORE_PIN21_CONFIG = PORT_PCR_MUX(2); p = 0x08; } else if (pin == 22) { // PTC1 CORE_PIN22_CONFIG = PORT_PCR_MUX(2); p = 0x08; } else if (pin == 15) { // PTC0 CORE_PIN15_CONFIG = PORT_PCR_MUX(2); p = 0x10; } else { reg = portOutputRegister(pin); *reg = 1; pinMode(pin, OUTPUT); p = 0; } pcs = p; clear(); SPCR.enable_pins(); } inline void write(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) { uint32_t pcsbits = pcs << 16; if (pcsbits) { SPI0.PUSHR = (b & 0xFF) | pcsbits | (cont ? SPI_PUSHR_CONT : 0); while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ; // wait if FIFO full } else { *reg = 0; SPI0.SR = SPI_SR_EOQF; SPI0.PUSHR = (b & 0xFF) | (cont ? 0 : SPI_PUSHR_EOQ); if (cont) { while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ; } else { while (!(SPI0.SR & SPI_SR_EOQF)) ; *reg = 1; } } } inline void write16(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) { uint32_t pcsbits = pcs << 16; if (pcsbits) { SPI0.PUSHR = (b & 0xFFFF) | (pcs << 16) | (cont ? SPI_PUSHR_CONT : 0) | SPI_PUSHR_CTAS(1); while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ; } else { *reg = 0; SPI0.SR = SPI_SR_EOQF; SPI0.PUSHR = (b & 0xFFFF) | (cont ? 0 : SPI_PUSHR_EOQ) | SPI_PUSHR_CTAS(1); if (cont) { while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ; } else { while (!(SPI0.SR & SPI_SR_EOQF)) ; *reg = 1; } } } inline uint32_t read(void) __attribute__((always_inline)) { while ((SPI0.SR & (15 << 4)) == 0) ; // TODO, could wait forever return SPI0.POPR; } inline void clear(void) __attribute__((always_inline)) { SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF; } private: static uint8_t pcs; static volatile uint8_t *reg; }; extern SPIFIFOclass SPIFIFO; #endif #endif