/* Teensyduino Core Library
 * http://www.pjrc.com/teensy/
 * Copyright (c) 2017 PJRC.COM, LLC.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * 1. The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * 2. If the Software is incorporated into a build system that allows
 * selection among a list of target devices, then similar target
 * devices manufactured by PJRC.COM must be included in the list of
 * target devices and selectable in the same manner.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "kinetis.h"
#include "core_pins.h" // testing only
#include "ser_print.h" // testing only
#include <errno.h>


// Flash Security Setting. On Teensy 3.2, you can lock the MK20 chip to prevent
// anyone from reading your code.  You CAN still reprogram your Teensy while
// security is set, but the bootloader will be unable to respond to auto-reboot
// requests from Arduino. Pressing the program button will cause a full chip
// erase to gain access, because the bootloader chip is locked out.  Normally,
// erase occurs when uploading begins, so if you press the Program button
// accidentally, simply power cycling will run your program again.  When
// security is locked, any Program button press causes immediate full erase.
// Special care must be used with the Program button, because it must be made
// accessible to initiate reprogramming, but it must not be accidentally
// pressed when Teensy Loader is not being used to reprogram.  To set lock the
// security change this to 0xDC.  Teensy 3.0 and 3.1 do not support security lock.
#define FSEC 0xDE

// Flash Options
#define FOPT 0xF9


extern unsigned long _stext;
extern unsigned long _etext;
extern unsigned long _sdata;
extern unsigned long _edata;
extern unsigned long _sbss;
extern unsigned long _ebss;
extern unsigned long _estack;
//extern void __init_array_start(void);
//extern void __init_array_end(void);



extern int main (void);
void ResetHandler(void);
void _init_Teensyduino_internal_(void) __attribute__((noinline));
void __libc_init_array(void);


void fault_isr(void)
{
#if 0
	uint32_t addr;

	SIM_SCGC4 |= 0x00000400;
	UART0_BDH = 0;
	UART0_BDL = 26; // 115200 at 48 MHz
	UART0_C2 = UART_C2_TE;
	PORTB_PCR17 = PORT_PCR_MUX(3);
	ser_print("\nfault: \n??: ");
        asm("ldr %0, [sp, #52]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\n??: ");
        asm("ldr %0, [sp, #48]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\n??: ");
        asm("ldr %0, [sp, #44]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\npsr:");
        asm("ldr %0, [sp, #40]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nadr:");
        asm("ldr %0, [sp, #36]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nlr: ");
        asm("ldr %0, [sp, #32]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr12:");
        asm("ldr %0, [sp, #28]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr3: ");
        asm("ldr %0, [sp, #24]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr2: ");
        asm("ldr %0, [sp, #20]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr1: ");
        asm("ldr %0, [sp, #16]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr0: ");
        asm("ldr %0, [sp, #12]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nr4: ");
        asm("ldr %0, [sp, #8]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\nlr: ");
        asm("ldr %0, [sp, #4]" : "=r" (addr) ::);
        ser_print_hex32(addr);
        ser_print("\n");
        asm("ldr %0, [sp, #0]" : "=r" (addr) ::);
#endif
	while (1) {
		// keep polling some communication while in fault
		// mode, so we don't completely die.
		if (SIM_SCGC4 & SIM_SCGC4_USBOTG) usb_isr();
		if (SIM_SCGC4 & SIM_SCGC4_UART0) uart0_status_isr();
		if (SIM_SCGC4 & SIM_SCGC4_UART1) uart1_status_isr();
		if (SIM_SCGC4 & SIM_SCGC4_UART2) uart2_status_isr();
	}
}

void unused_isr(void)
{
	fault_isr();
}

void nmi_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void hard_fault_isr(void)	__attribute__ ((weak, alias("fault_isr")));
void memmanage_fault_isr(void)	__attribute__ ((weak, alias("fault_isr")));
void bus_fault_isr(void)	__attribute__ ((weak, alias("fault_isr")));
void usage_fault_isr(void)	__attribute__ ((weak, alias("fault_isr")));
void svcall_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void debugmonitor_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void pendablesrvreq_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void systick_isr(void);

void dma_ch0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch3_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch4_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch5_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch6_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch7_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch8_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch9_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch10_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch11_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch12_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch13_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch14_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_ch15_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dma_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void mcm_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void randnum_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void flash_cmd_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void flash_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void low_voltage_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void wakeup_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void watchdog_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2c0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2c1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2c2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2c3_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void spi0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void spi1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void spi2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void sdhc_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void enet_timer_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void enet_tx_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void enet_rx_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void enet_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_message_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_bus_off_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_tx_warn_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_rx_warn_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can0_wakeup_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_message_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_bus_off_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_tx_warn_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_rx_warn_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void can1_wakeup_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void i2s0_tx_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2s0_rx_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void i2s0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void uart0_lon_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart0_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart0_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart1_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart1_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart2_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart2_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart3_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart3_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart4_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart4_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart5_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void uart5_error_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void lpuart0_status_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void adc0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void adc1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void cmp0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void cmp1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void cmp2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void cmp3_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void ftm0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void ftm1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void ftm2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void ftm3_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void tpm0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void tpm1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void tpm2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void cmt_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void rtc_alarm_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void rtc_seconds_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void pit_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void pit0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void pit1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void pit2_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void pit3_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void pdb_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void usb_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void usb_charge_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void usbhs_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void usbhs_phy_isr(void)	__attribute__ ((weak, alias("unused_isr")));
void dac0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void dac1_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void tsi0_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void mcg_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void lptmr_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void porta_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void portb_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void portc_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void portd_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void porte_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void portcd_isr(void)		__attribute__ ((weak, alias("unused_isr")));
void software_isr(void)		__attribute__ ((weak, alias("unused_isr")));

#if defined(__MK20DX128__)
__attribute__ ((section(".dmabuffers"), used, aligned(256)))
#elif defined(__MK20DX256__)
__attribute__ ((section(".dmabuffers"), used, aligned(512)))
#elif defined(__MKL26Z64__)
__attribute__ ((section(".dmabuffers"), used, aligned(256)))
#elif defined(__MK64FX512__)
__attribute__ ((section(".dmabuffers"), used, aligned(512)))
#elif defined(__MK66FX1M0__)
__attribute__ ((section(".dmabuffers"), used, aligned(512)))
#endif
void (* _VectorsRam[NVIC_NUM_INTERRUPTS+16])(void);

__attribute__ ((section(".vectors"), used))
void (* const _VectorsFlash[NVIC_NUM_INTERRUPTS+16])(void) =
{
	(void (*)(void))((unsigned long)&_estack),	//  0 ARM: Initial Stack Pointer
	ResetHandler,					//  1 ARM: Initial Program Counter
	nmi_isr,					//  2 ARM: Non-maskable Interrupt (NMI)
	hard_fault_isr,					//  3 ARM: Hard Fault
	memmanage_fault_isr,				//  4 ARM: MemManage Fault
	bus_fault_isr,					//  5 ARM: Bus Fault
	usage_fault_isr,				//  6 ARM: Usage Fault
	fault_isr,					//  7 --
	fault_isr,					//  8 --
	fault_isr,					//  9 --
	fault_isr,					// 10 --
	svcall_isr,					// 11 ARM: Supervisor call (SVCall)
	debugmonitor_isr,				// 12 ARM: Debug Monitor
	fault_isr,					// 13 --
	pendablesrvreq_isr,				// 14 ARM: Pendable req serv(PendableSrvReq)
	systick_isr,					// 15 ARM: System tick timer (SysTick)
#if defined(__MK20DX128__)
	dma_ch0_isr,					// 16 DMA channel 0 transfer complete
	dma_ch1_isr,					// 17 DMA channel 1 transfer complete
	dma_ch2_isr,					// 18 DMA channel 2 transfer complete
	dma_ch3_isr,					// 19 DMA channel 3 transfer complete
	dma_error_isr,					// 20 DMA error interrupt channel
	unused_isr,					// 21 DMA --
	flash_cmd_isr,					// 22 Flash Memory Command complete
	flash_error_isr,				// 23 Flash Read collision
	low_voltage_isr,				// 24 Low-voltage detect/warning
	wakeup_isr,					// 25 Low Leakage Wakeup
	watchdog_isr,					// 26 Both EWM and WDOG interrupt
	i2c0_isr,					// 27 I2C0
	spi0_isr,					// 28 SPI0
	i2s0_tx_isr,					// 29 I2S0 Transmit
	i2s0_rx_isr,					// 30 I2S0 Receive
	uart0_lon_isr,					// 31 UART0 CEA709.1-B (LON) status
	uart0_status_isr,				// 32 UART0 status
	uart0_error_isr,				// 33 UART0 error
	uart1_status_isr,				// 34 UART1 status
	uart1_error_isr,				// 35 UART1 error
	uart2_status_isr,				// 36 UART2 status
	uart2_error_isr,				// 37 UART2 error
	adc0_isr,					// 38 ADC0
	cmp0_isr,					// 39 CMP0
	cmp1_isr,					// 40 CMP1
	ftm0_isr,					// 41 FTM0
	ftm1_isr,					// 42 FTM1
	cmt_isr,					// 43 CMT
	rtc_alarm_isr,					// 44 RTC Alarm interrupt
	rtc_seconds_isr,				// 45 RTC Seconds interrupt
	pit0_isr,					// 46 PIT Channel 0
	pit1_isr,					// 47 PIT Channel 1
	pit2_isr,					// 48 PIT Channel 2
	pit3_isr,					// 49 PIT Channel 3
	pdb_isr,					// 50 PDB Programmable Delay Block
	usb_isr,					// 51 USB OTG
	usb_charge_isr,					// 52 USB Charger Detect
	tsi0_isr,					// 53 TSI0
	mcg_isr,					// 54 MCG
	lptmr_isr,					// 55 Low Power Timer
	porta_isr,					// 56 Pin detect (Port A)
	portb_isr,					// 57 Pin detect (Port B)
	portc_isr,					// 58 Pin detect (Port C)
	portd_isr,					// 59 Pin detect (Port D)
	porte_isr,					// 60 Pin detect (Port E)
	software_isr,					// 61 Software interrupt
#elif defined(__MK20DX256__)
	dma_ch0_isr,					// 16 DMA channel 0 transfer complete
	dma_ch1_isr,					// 17 DMA channel 1 transfer complete
	dma_ch2_isr,					// 18 DMA channel 2 transfer complete
	dma_ch3_isr,					// 19 DMA channel 3 transfer complete
	dma_ch4_isr,					// 20 DMA channel 4 transfer complete
	dma_ch5_isr,					// 21 DMA channel 5 transfer complete
	dma_ch6_isr,					// 22 DMA channel 6 transfer complete
	dma_ch7_isr,					// 23 DMA channel 7 transfer complete
	dma_ch8_isr,					// 24 DMA channel 8 transfer complete
	dma_ch9_isr,					// 25 DMA channel 9 transfer complete
	dma_ch10_isr,					// 26 DMA channel 10 transfer complete
	dma_ch11_isr,					// 27 DMA channel 11 transfer complete
	dma_ch12_isr,					// 28 DMA channel 12 transfer complete
	dma_ch13_isr,					// 29 DMA channel 13 transfer complete
	dma_ch14_isr,					// 30 DMA channel 14 transfer complete
	dma_ch15_isr,					// 31 DMA channel 15 transfer complete
	dma_error_isr,					// 32 DMA error interrupt channel
	unused_isr,					// 33 --
	flash_cmd_isr,					// 34 Flash Memory Command complete
	flash_error_isr,				// 35 Flash Read collision
	low_voltage_isr,				// 36 Low-voltage detect/warning
	wakeup_isr,					// 37 Low Leakage Wakeup
	watchdog_isr,					// 38 Both EWM and WDOG interrupt
	unused_isr,					// 39 --
	i2c0_isr,					// 40 I2C0
	i2c1_isr,					// 41 I2C1
	spi0_isr,					// 42 SPI0
	spi1_isr,					// 43 SPI1
	unused_isr,					// 44 --
	can0_message_isr,				// 45 CAN OR'ed Message buffer (0-15)
	can0_bus_off_isr,				// 46 CAN Bus Off
	can0_error_isr,					// 47 CAN Error
	can0_tx_warn_isr,				// 48 CAN Transmit Warning
	can0_rx_warn_isr,				// 49 CAN Receive Warning
	can0_wakeup_isr,				// 50 CAN Wake Up
	i2s0_tx_isr,					// 51 I2S0 Transmit
	i2s0_rx_isr,					// 52 I2S0 Receive
	unused_isr,					// 53 --
	unused_isr,					// 54 --
	unused_isr,					// 55 --
	unused_isr,					// 56 --
	unused_isr,					// 57 --
	unused_isr,					// 58 --
	unused_isr,					// 59 --
	uart0_lon_isr,					// 60 UART0 CEA709.1-B (LON) status
	uart0_status_isr,				// 61 UART0 status
	uart0_error_isr,				// 62 UART0 error
	uart1_status_isr,				// 63 UART1 status
	uart1_error_isr,				// 64 UART1 error
	uart2_status_isr,				// 65 UART2 status
	uart2_error_isr,				// 66 UART2 error
	unused_isr,					// 67 --
	unused_isr,					// 68 --
	unused_isr,					// 69 --
	unused_isr,					// 70 --
	unused_isr,					// 71 --
	unused_isr,					// 72 --
	adc0_isr,					// 73 ADC0
	adc1_isr,					// 74 ADC1
	cmp0_isr,					// 75 CMP0
	cmp1_isr,					// 76 CMP1
	cmp2_isr,					// 77 CMP2
	ftm0_isr,					// 78 FTM0
	ftm1_isr,					// 79 FTM1
	ftm2_isr,					// 80 FTM2
	cmt_isr,					// 81 CMT
	rtc_alarm_isr,					// 82 RTC Alarm interrupt
	rtc_seconds_isr,				// 83 RTC Seconds interrupt
	pit0_isr,					// 84 PIT Channel 0
	pit1_isr,					// 85 PIT Channel 1
	pit2_isr,					// 86 PIT Channel 2
	pit3_isr,					// 87 PIT Channel 3
	pdb_isr,					// 88 PDB Programmable Delay Block
	usb_isr,					// 89 USB OTG
	usb_charge_isr,					// 90 USB Charger Detect
	unused_isr,					// 91 --
	unused_isr,					// 92 --
	unused_isr,					// 93 --
	unused_isr,					// 94 --
	unused_isr,					// 95 --
	unused_isr,					// 96 --
	dac0_isr,					// 97 DAC0
	unused_isr,					// 98 --
	tsi0_isr,					// 99 TSI0
	mcg_isr,					// 100 MCG
	lptmr_isr,					// 101 Low Power Timer
	unused_isr,					// 102 --
	porta_isr,					// 103 Pin detect (Port A)
	portb_isr,					// 104 Pin detect (Port B)
	portc_isr,					// 105 Pin detect (Port C)
	portd_isr,					// 106 Pin detect (Port D)
	porte_isr,					// 107 Pin detect (Port E)
	unused_isr,					// 108 --
	unused_isr,					// 109 --
	software_isr,					// 110 Software interrupt
#elif defined(__MKL26Z64__)
	dma_ch0_isr,					// 16 DMA channel 0 transfer complete
	dma_ch1_isr,					// 17 DMA channel 1 transfer complete
	dma_ch2_isr,					// 18 DMA channel 2 transfer complete
	dma_ch3_isr,					// 19 DMA channel 3 transfer complete
	unused_isr,					// 20 --
	flash_cmd_isr,					// 21 Flash Memory Command complete
	low_voltage_isr,				// 22 Low-voltage detect/warning
	wakeup_isr,					// 23 Low Leakage Wakeup
	i2c0_isr,					// 24 I2C0
	i2c1_isr,					// 25 I2C1
	spi0_isr,					// 26 SPI0
	spi1_isr,					// 27 SPI1
	uart0_status_isr,				// 28 UART0 status & error
	uart1_status_isr,				// 29 UART1 status & error
	uart2_status_isr,				// 30 UART2 status & error
	adc0_isr,					// 31 ADC0
	cmp0_isr,					// 32 CMP0
	ftm0_isr,					// 33 FTM0
	ftm1_isr,					// 34 FTM1
	ftm2_isr,					// 35 FTM2
	rtc_alarm_isr,					// 36 RTC Alarm interrupt
	rtc_seconds_isr,				// 37 RTC Seconds interrupt
	pit_isr,					// 38 PIT Both Channels
	i2s0_isr,					// 39 I2S0 Transmit & Receive
	usb_isr,					// 40 USB OTG
	dac0_isr,					// 41 DAC0
	tsi0_isr,					// 42 TSI0
	mcg_isr,					// 43 MCG
	lptmr_isr,					// 44 Low Power Timer
	software_isr,					// 45 Software interrupt
	porta_isr,					// 46 Pin detect (Port A)
	portcd_isr,					// 47 Pin detect (Port C and D)
#elif defined(__MK64FX512__)
	dma_ch0_isr,					// 16 DMA channel 0 transfer complete
	dma_ch1_isr,					// 17 DMA channel 1 transfer complete
	dma_ch2_isr,					// 18 DMA channel 2 transfer complete
	dma_ch3_isr,					// 19 DMA channel 3 transfer complete
	dma_ch4_isr,					// 20 DMA channel 4 transfer complete
	dma_ch5_isr,					// 21 DMA channel 5 transfer complete
	dma_ch6_isr,					// 22 DMA channel 6 transfer complete
	dma_ch7_isr,					// 23 DMA channel 7 transfer complete
	dma_ch8_isr,					// 24 DMA channel 8 transfer complete
	dma_ch9_isr,					// 25 DMA channel 9 transfer complete
	dma_ch10_isr,					// 26 DMA channel 10 transfer complete
	dma_ch11_isr,					// 27 DMA channel 11 transfer complete
	dma_ch12_isr,					// 28 DMA channel 12 transfer complete
	dma_ch13_isr,					// 29 DMA channel 13 transfer complete
	dma_ch14_isr,					// 30 DMA channel 14 transfer complete
	dma_ch15_isr,					// 31 DMA channel 15 transfer complete
	dma_error_isr,					// 32 DMA error interrupt channel
	mcm_isr,					// 33 MCM
	flash_cmd_isr,					// 34 Flash Memory Command complete
	flash_error_isr,				// 35 Flash Read collision
	low_voltage_isr,				// 36 Low-voltage detect/warning
	wakeup_isr,					// 37 Low Leakage Wakeup
	watchdog_isr,					// 38 Both EWM and WDOG interrupt
	randnum_isr,					// 39 Random Number Generator
	i2c0_isr,					// 40 I2C0
	i2c1_isr,					// 41 I2C1
	spi0_isr,					// 42 SPI0
	spi1_isr,					// 43 SPI1
	i2s0_tx_isr,					// 44 I2S0 Transmit
	i2s0_rx_isr,					// 45 I2S0 Receive
	unused_isr,					// 46 --
	uart0_status_isr,				// 47 UART0 status
	uart0_error_isr,				// 48 UART0 error
	uart1_status_isr,				// 49 UART1 status
	uart1_error_isr,				// 50 UART1 error
	uart2_status_isr,				// 51 UART2 status
	uart2_error_isr,				// 52 UART2 error
	uart3_status_isr,				// 53 UART3 status
	uart3_error_isr,				// 54 UART3 error
	adc0_isr,					// 55 ADC0
	cmp0_isr,					// 56 CMP0
	cmp1_isr,					// 57 CMP1
	ftm0_isr,					// 58 FTM0
	ftm1_isr,					// 59 FTM1
	ftm2_isr,					// 60 FTM2
	cmt_isr,					// 61 CMT
	rtc_alarm_isr,					// 62 RTC Alarm interrupt
	rtc_seconds_isr,				// 63 RTC Seconds interrupt
	pit0_isr,					// 64 PIT Channel 0
	pit1_isr,					// 65 PIT Channel 1
	pit2_isr,					// 66 PIT Channel 2
	pit3_isr,					// 67 PIT Channel 3
	pdb_isr,					// 68 PDB Programmable Delay Block
	usb_isr,					// 69 USB OTG
	usb_charge_isr,					// 70 USB Charger Detect
	unused_isr,					// 71 --
	dac0_isr,					// 72 DAC0
	mcg_isr,					// 73 MCG
	lptmr_isr,					// 74 Low Power Timer
	porta_isr,					// 75 Pin detect (Port A)
	portb_isr,					// 76 Pin detect (Port B)
	portc_isr,					// 77 Pin detect (Port C)
	portd_isr,					// 78 Pin detect (Port D)
	porte_isr,					// 79 Pin detect (Port E)
	software_isr,					// 80 Software interrupt
	spi2_isr,					// 81 SPI2
	uart4_status_isr,				// 82 UART4 status
	uart4_error_isr,				// 83 UART4 error
	uart5_status_isr,				// 84 UART4 status
	uart5_error_isr,				// 85 UART4 error
	cmp2_isr,					// 86 CMP2
	ftm3_isr,					// 87 FTM3
	dac1_isr,					// 88 DAC1
	adc1_isr,					// 89 ADC1
	i2c2_isr,					// 90 I2C2
	can0_message_isr,				// 91 CAN OR'ed Message buffer (0-15)
	can0_bus_off_isr,				// 92 CAN Bus Off
	can0_error_isr,					// 93 CAN Error
	can0_tx_warn_isr,				// 94 CAN Transmit Warning
	can0_rx_warn_isr,				// 95 CAN Receive Warning
	can0_wakeup_isr,				// 96 CAN Wake Up
	sdhc_isr,					// 97 SDHC
	enet_timer_isr,					// 98 Ethernet IEEE1588 Timers
	enet_tx_isr,					// 99 Ethernet Transmit
	enet_rx_isr,					// 100 Ethernet Receive
	enet_error_isr,					// 101 Ethernet Error
#elif defined(__MK66FX1M0__)
	dma_ch0_isr,					// 16 DMA channel 0 transfer complete
	dma_ch1_isr,					// 17 DMA channel 1 transfer complete
	dma_ch2_isr,					// 18 DMA channel 2 transfer complete
	dma_ch3_isr,					// 19 DMA channel 3 transfer complete
	dma_ch4_isr,					// 20 DMA channel 4 transfer complete
	dma_ch5_isr,					// 21 DMA channel 5 transfer complete
	dma_ch6_isr,					// 22 DMA channel 6 transfer complete
	dma_ch7_isr,					// 23 DMA channel 7 transfer complete
	dma_ch8_isr,					// 24 DMA channel 8 transfer complete
	dma_ch9_isr,					// 25 DMA channel 9 transfer complete
	dma_ch10_isr,					// 26 DMA channel 10 transfer complete
	dma_ch11_isr,					// 27 DMA channel 11 transfer complete
	dma_ch12_isr,					// 28 DMA channel 12 transfer complete
	dma_ch13_isr,					// 29 DMA channel 13 transfer complete
	dma_ch14_isr,					// 30 DMA channel 14 transfer complete
	dma_ch15_isr,					// 31 DMA channel 15 transfer complete
	dma_error_isr,					// 32 DMA error interrupt channel
	mcm_isr,					// 33 MCM
	flash_cmd_isr,					// 34 Flash Memory Command complete
	flash_error_isr,				// 35 Flash Read collision
	low_voltage_isr,				// 36 Low-voltage detect/warning
	wakeup_isr,					// 37 Low Leakage Wakeup
	watchdog_isr,					// 38 Both EWM and WDOG interrupt
	randnum_isr,					// 39 Random Number Generator
	i2c0_isr,					// 40 I2C0
	i2c1_isr,					// 41 I2C1
	spi0_isr,					// 42 SPI0
	spi1_isr,					// 43 SPI1
	i2s0_tx_isr,					// 44 I2S0 Transmit
	i2s0_rx_isr,					// 45 I2S0 Receive
	unused_isr,					// 46 --
	uart0_status_isr,				// 47 UART0 status
	uart0_error_isr,				// 48 UART0 error
	uart1_status_isr,				// 49 UART1 status
	uart1_error_isr,				// 50 UART1 error
	uart2_status_isr,				// 51 UART2 status
	uart2_error_isr,				// 52 UART2 error
	uart3_status_isr,				// 53 UART3 status
	uart3_error_isr,				// 54 UART3 error
	adc0_isr,					// 55 ADC0
	cmp0_isr,					// 56 CMP0
	cmp1_isr,					// 57 CMP1
	ftm0_isr,					// 58 FTM0
	ftm1_isr,					// 59 FTM1
	ftm2_isr,					// 60 FTM2
	cmt_isr,					// 61 CMT
	rtc_alarm_isr,					// 62 RTC Alarm interrupt
	rtc_seconds_isr,				// 63 RTC Seconds interrupt
	pit0_isr,					// 64 PIT Channel 0
	pit1_isr,					// 65 PIT Channel 1
	pit2_isr,					// 66 PIT Channel 2
	pit3_isr,					// 67 PIT Channel 3
	pdb_isr,					// 68 PDB Programmable Delay Block
	usb_isr,					// 69 USB OTG
	usb_charge_isr,					// 70 USB Charger Detect
	unused_isr,					// 71 --
	dac0_isr,					// 72 DAC0
	mcg_isr,					// 73 MCG
	lptmr_isr,					// 74 Low Power Timer
	porta_isr,					// 75 Pin detect (Port A)
	portb_isr,					// 76 Pin detect (Port B)
	portc_isr,					// 77 Pin detect (Port C)
	portd_isr,					// 78 Pin detect (Port D)
	porte_isr,					// 79 Pin detect (Port E)
	software_isr,					// 80 Software interrupt
	spi2_isr,					// 81 SPI2
	uart4_status_isr,				// 82 UART4 status
	uart4_error_isr,				// 83 UART4 error
	unused_isr,					// 84 --
	unused_isr,					// 85 --
	cmp2_isr,					// 86 CMP2
	ftm3_isr,					// 87 FTM3
	dac1_isr,					// 88 DAC1
	adc1_isr,					// 89 ADC1
	i2c2_isr,					// 90 I2C2
	can0_message_isr,				// 91 CAN OR'ed Message buffer (0-15)
	can0_bus_off_isr,				// 92 CAN Bus Off
	can0_error_isr,					// 93 CAN Error
	can0_tx_warn_isr,				// 94 CAN Transmit Warning
	can0_rx_warn_isr,				// 95 CAN Receive Warning
	can0_wakeup_isr,				// 96 CAN Wake Up
	sdhc_isr,					// 97 SDHC
	enet_timer_isr,					// 98 Ethernet IEEE1588 Timers
	enet_tx_isr,					// 99 Ethernet Transmit
	enet_rx_isr,					// 100 Ethernet Receive
	enet_error_isr,					// 101 Ethernet Error
	lpuart0_status_isr,				// 102 LPUART
	tsi0_isr,					// 103 TSI0
	tpm1_isr,					// 104 FTM1
	tpm2_isr,					// 105 FTM2
	usbhs_phy_isr,					// 106 USB-HS Phy
	i2c3_isr,					// 107 I2C3
	cmp3_isr,					// 108 CMP3
	usbhs_isr,					// 109 USB-HS
	can1_message_isr,				// 110 CAN OR'ed Message buffer (0-15)
	can1_bus_off_isr,				// 111 CAN Bus Off
	can1_error_isr,					// 112 CAN Error
	can1_tx_warn_isr,				// 113 CAN Transmit Warning
	can1_rx_warn_isr,				// 114 CAN Receive Warning
	can1_wakeup_isr,				// 115 CAN Wake Up
#endif
};


__attribute__ ((section(".flashconfig"), used))
const uint8_t flashconfigbytes[16] = {
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, FSEC, FOPT, 0xFF, 0xFF
};


// Automatically initialize the RTC.  When the build defines the compile
// time, and the user has added a crystal, the RTC will automatically
// begin at the time of the first upload.
#ifndef TIME_T
#define TIME_T 1349049600 // default 1 Oct 2012 (never used, Arduino sets this)
#endif
extern void *__rtc_localtime; // Arduino build process sets this
extern void rtc_set(unsigned long t);


static void startup_default_early_hook(void) {
#if defined(KINETISK)
	WDOG_STCTRLH = WDOG_STCTRLH_ALLOWUPDATE;
#elif defined(KINETISL)
	SIM_COPC = 0;  // disable the watchdog
#endif
}
static void startup_default_late_hook(void) {}
void startup_early_hook(void)		__attribute__ ((weak, alias("startup_default_early_hook")));
void startup_late_hook(void)		__attribute__ ((weak, alias("startup_default_late_hook")));


#if defined(__PURE_CODE__) || !defined(__OPTIMIZE__) || defined(__clang__)
// cases known to compile too large for 0-0x400 memory region
__attribute__ ((optimize("-Os")))
#else
// hopefully all others fit into startup section (below 0x400)
__attribute__ ((section(".startup"),optimize("-Os")))
#endif
void ResetHandler(void)
{
	uint32_t *src = &_etext;
	uint32_t *dest = &_sdata;
	unsigned int i;
#if F_CPU <= 2000000
	volatile int n;
#endif
	//volatile int count;

#ifdef KINETISK
	WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
	WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
	__asm__ volatile ("nop");
	__asm__ volatile ("nop");
#endif
	// programs using the watchdog timer or needing to initialize hardware as
	// early as possible can implement startup_early_hook()
	startup_early_hook();

	// enable clocks to always-used peripherals
#if defined(__MK20DX128__)
	SIM_SCGC5 = 0x00043F82;		// clocks active to all GPIO
	SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
#elif defined(__MK20DX256__)
	SIM_SCGC3 = SIM_SCGC3_ADC1 | SIM_SCGC3_FTM2;
	SIM_SCGC5 = 0x00043F82;		// clocks active to all GPIO
	SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
	SIM_SCGC3 = SIM_SCGC3_ADC1 | SIM_SCGC3_FTM2 | SIM_SCGC3_FTM3;
	SIM_SCGC5 = 0x00043F82;		// clocks active to all GPIO
	SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
	//PORTC_PCR5 = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE;
	//GPIOC_PDDR |= (1<<5);
	//GPIOC_PSOR = (1<<5);
	//while (1);
#elif defined(__MKL26Z64__)
	SIM_SCGC4 = SIM_SCGC4_USBOTG | 0xF0000030;
	SIM_SCGC5 = 0x00003F82;		// clocks active to all GPIO
	SIM_SCGC6 = SIM_SCGC6_ADC0 | SIM_SCGC6_TPM0 | SIM_SCGC6_TPM1 | SIM_SCGC6_TPM2 | SIM_SCGC6_FTFL;
#endif
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
	SCB_CPACR = 0x00F00000;
#endif
#if defined(__MK66FX1M0__)
	LMEM_PCCCR = 0x85000003;
#endif
#if 0
	// testing only, enable ser_print
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1);
	MCG_C4 |= MCG_C4_DMX32 | MCG_C4_DRST_DRS(1);
	SIM_SOPT2 = SIM_SOPT2_UART0SRC(1) | SIM_SOPT2_TPMSRC(1);
	SIM_SCGC4 |= 0x00000400;
	UART0_BDH = 0;
	UART0_BDL = 26; // 115200 at 48 MHz
	UART0_C2 = UART_C2_TE;
	PORTB_PCR17 = PORT_PCR_MUX(3);
#endif
#if defined(KINETISK) && !defined(__MK66FX1M0__)
	// If the RTC oscillator isn't enabled, get it started early.
	// But don't do this early on Teensy 3.6 - RTC_CR depends on 3.3V+VBAT
	// which may be ~0.4V "behind" 3.3V if the power ramps up slowly.
	if (!(RTC_CR & RTC_CR_OSCE)) {
		RTC_SR = 0;
		RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
	}
#endif
	// release I/O pins hold, if we woke up from VLLS mode
	if (PMC_REGSC & PMC_REGSC_ACKISO) PMC_REGSC |= PMC_REGSC_ACKISO;

    // since this is a write once register, make it visible to all F_CPU's
    // so we can into other sleep modes in the future at any speed
#if defined(__MK66FX1M0__)
	SMC_PMPROT = SMC_PMPROT_AHSRUN | SMC_PMPROT_AVLP | SMC_PMPROT_ALLS | SMC_PMPROT_AVLLS;
#else
	SMC_PMPROT = SMC_PMPROT_AVLP | SMC_PMPROT_ALLS | SMC_PMPROT_AVLLS;
#endif
    
	// TODO: do this while the PLL is waiting to lock....
	while (dest < &_edata) *dest++ = *src++;
	dest = &_sbss;
	while (dest < &_ebss) *dest++ = 0;

	// default all interrupts to medium priority level
	for (i=0; i < NVIC_NUM_INTERRUPTS + 16; i++) _VectorsRam[i] = _VectorsFlash[i];
	for (i=0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_PRIORITY(i, 128);
	SCB_VTOR = (uint32_t)_VectorsRam;	// use vector table in RAM

	// hardware always starts in FEI mode
	//  C1[CLKS] bits are written to 00
	//  C1[IREFS] bit is written to 1
	//  C6[PLLS] bit is written to 0
// MCG_SC[FCDIV] defaults to divide by two for internal ref clock
// I tried changing MSG_SC to divide by 1, it didn't work for me
#if F_CPU <= 2000000
    #if defined(KINETISK)
    MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_IREFS;
    #elif defined(KINETISL)
	// use the internal oscillator
	MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_IREFS | MCG_C1_IRCLKEN;
    #endif
	// wait for MCGOUT to use oscillator
	while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(1)) ;
	for (n=0; n<10; n++) ; // TODO: why do we get 2 mA extra without this delay?
	MCG_C2 = MCG_C2_IRCS;
	while (!(MCG_S & MCG_S_IRCST)) ;
	// now in FBI mode:
	//  C1[CLKS] bits are written to 01
	//  C1[IREFS] bit is written to 1
	//  C6[PLLS] is written to 0
	//  C2[LP] is written to 0
	MCG_C2 = MCG_C2_IRCS | MCG_C2_LP;
	// now in BLPI mode:
	//  C1[CLKS] bits are written to 01
	//  C1[IREFS] bit is written to 1
	//  C6[PLLS] bit is written to 0
	//  C2[LP] bit is written to 1
#else
    #if defined(KINETISK)
    // enable capacitors for crystal
    OSC0_CR = OSC_SC8P | OSC_SC2P | OSC_ERCLKEN;
    #elif defined(KINETISL)
    // enable capacitors for crystal
    OSC0_CR = OSC_SC8P | OSC_SC2P | OSC_ERCLKEN;
    #endif
	// enable osc, 8-32 MHz range, low power mode
	MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS;
	// switch to crystal as clock source, FLL input = 16 MHz / 512
	MCG_C1 =  MCG_C1_CLKS(2) | MCG_C1_FRDIV(4);
	// wait for crystal oscillator to begin
	while ((MCG_S & MCG_S_OSCINIT0) == 0) ;
	// wait for FLL to use oscillator
	while ((MCG_S & MCG_S_IREFST) != 0) ;
	// wait for MCGOUT to use oscillator
	while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ;

	// now in FBE mode
	//  C1[CLKS] bits are written to 10
	//  C1[IREFS] bit is written to 0
	//  C1[FRDIV] must be written to divide xtal to 31.25-39 kHz
	//  C6[PLLS] bit is written to 0
	//  C2[LP] is written to 0
  #if F_CPU <= 16000000
	// if the crystal is fast enough, use it directly (no FLL or PLL)
	MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS | MCG_C2_LP;
	// BLPE mode:
	//   C1[CLKS] bits are written to 10
	//   C1[IREFS] bit is written to 0
	//   C2[LP] bit is written to 1
  #else
	// if we need faster than the crystal, turn on the PLL
   #if defined(__MK66FX1M0__)
    #if F_CPU > 120000000
	SMC_PMCTRL = SMC_PMCTRL_RUNM(3); // enter HSRUN mode
	while (SMC_PMSTAT != SMC_PMSTAT_HSRUN) ; // wait for HSRUN
    #endif
		#if F_CPU == 256000000
	//See table in 27.4.6 MCG Control 6 Register (MCG_C6)
	//16 -> Multiply factor 32. 32*8MHz =256MHz
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(16);
    #elif F_CPU == 240000000
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(14);
    #elif F_CPU == 216000000
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(11);
    #elif F_CPU == 192000000
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(8);
    #elif F_CPU == 180000000
	MCG_C5 = MCG_C5_PRDIV0(1);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(29);
    #elif F_CPU == 168000000
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(5);
    #elif F_CPU == 144000000
	MCG_C5 = MCG_C5_PRDIV0(0);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(2);
    #elif F_CPU == 120000000
	MCG_C5 = MCG_C5_PRDIV0(1);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(14);
    #elif F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
	MCG_C5 = MCG_C5_PRDIV0(1);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(8);
    #elif F_CPU == 72000000
	MCG_C5 = MCG_C5_PRDIV0(1);
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(2);
    #elif F_CPU > 16000000
    #error "MK66FX1M0 does not support this clock speed yet...."
    #endif
   #else
    #if F_CPU == 72000000
	MCG_C5 = MCG_C5_PRDIV0(5);		 // config PLL input for 16 MHz Crystal / 6 = 2.667 Hz
    #else
	MCG_C5 = MCG_C5_PRDIV0(3);		 // config PLL input for 16 MHz Crystal / 4 = 4 MHz
    #endif
    #if F_CPU == 168000000
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(18); // config PLL for 168 MHz output
    #elif F_CPU == 144000000
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(12); // config PLL for 144 MHz output
    #elif F_CPU == 120000000
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(6); // config PLL for 120 MHz output
    #elif F_CPU == 72000000
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(3); // config PLL for 72 MHz output
    #elif F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
	MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0); // config PLL for 96 MHz output
    #elif F_CPU > 16000000
    #error "This clock speed isn't supported..."
    #endif
   #endif

	// wait for PLL to start using xtal as its input
	while (!(MCG_S & MCG_S_PLLST)) ;
	// wait for PLL to lock
	while (!(MCG_S & MCG_S_LOCK0)) ;
	// now we're in PBE mode
  #endif
#endif
	// now program the clock dividers
#if F_CPU == 256000000
	// config divisors: 256 MHz core, 64 MHz bus, 32 MHz flash, USB = IRC48M
	// TODO: gradual ramp-up for HSRUN mode
	#if F_BUS == 64000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(7);
	#elif F_BUS == 128000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(7);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0);
#elif F_CPU == 240000000
	// config divisors: 240 MHz core, 60 MHz bus, 30 MHz flash, USB = 240 / 5
	// TODO: gradual ramp-up for HSRUN mode
	#if F_BUS == 60000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(7);
	#elif F_BUS == 80000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(7);
	#elif F_BUS == 120000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(7);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(4);
#elif F_CPU == 216000000
	// config divisors: 216 MHz core, 54 MHz bus, 27 MHz flash, USB = IRC48M
	// TODO: gradual ramp-up for HSRUN mode
	#if F_BUS == 54000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(7);
	#elif F_BUS == 72000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(7);
	#elif F_BUS == 108000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(7);	
	
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0);
#elif F_CPU == 192000000
	// config divisors: 192 MHz core, 48 MHz bus, 27.4 MHz flash, USB = 192 / 4
	// TODO: gradual ramp-up for HSRUN mode
	#if F_BUS == 48000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(6);
	#elif F_BUS == 64000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(6);
	#elif F_BUS == 96000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(6);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(3);
#elif F_CPU == 180000000
	// config divisors: 180 MHz core, 60 MHz bus, 25.7 MHz flash, USB = IRC48M
	#if F_BUS == 60000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(6);
	#elif F_BUS == 90000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(6);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0);
#elif F_CPU == 168000000
	// config divisors: 168 MHz core, 56 MHz bus, 28 MHz flash, USB = 168 * 2 / 7
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(5);
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(6) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 144000000
	// config divisors: 144 MHz core, 48 MHz bus, 28.8 MHz flash, USB = 144 / 3
	#if F_BUS == 48000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(4);
	#elif F_BUS == 72000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(4);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2);
#elif F_CPU == 120000000
	// config divisors: 120 MHz core, 60 MHz bus, 24 MHz flash, USB = 128 * 2 / 5
	#if F_BUS == 60000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(4);
	#elif F_BUS == 120000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(4);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(4) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 96000000
	// config divisors: 96 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2
	#if F_BUS == 48000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(3);
	#elif F_BUS == 96000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(3);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
#elif F_CPU == 72000000
	// config divisors: 72 MHz core, 36 MHz bus, 24 MHz flash, USB = 72 * 2 / 3
	#if F_BUS == 36000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(2);
	#elif F_BUS == 72000000
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(2);
	#else
	#error "This F_CPU & F_BUS combination is not supported"
	#endif
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 48000000
	// config divisors: 48 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2
  #if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV3(1) |  SIM_CLKDIV1_OUTDIV4(3);
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
  #elif defined(KINETISL)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV4(1);
  #endif
#elif F_CPU == 24000000
	// config divisors: 24 MHz core, 24 MHz bus, 24 MHz flash, USB = 96 / 2
	#if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(3);
	SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
	#elif defined(KINETISL)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV4(0);
	#endif
#elif F_CPU == 16000000
	// config divisors: 16 MHz core, 16 MHz bus, 16 MHz flash
  #if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV3(0) | SIM_CLKDIV1_OUTDIV4(0);
  #elif defined(KINETISL)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(0);
  #endif
#elif F_CPU == 8000000
	// config divisors: 8 MHz core, 8 MHz bus, 8 MHz flash
  #if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(1);
  #elif defined(KINETISL)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV4(0);
  #endif
#elif F_CPU == 4000000
	// config divisors: 4 MHz core, 4 MHz bus, 2 MHz flash
	// since we are running from external clock 16MHz
	// fix outdiv too -> cpu 16/4, bus 16/4, flash 16/4
	// here we can go into vlpr?
	// config divisors: 4 MHz core, 4 MHz bus, 4 MHz flash
  #if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(3);
  #elif defined(KINETISL)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV4(0);
  #endif
#elif F_CPU == 2000000
	// since we are running from the fast internal reference clock 4MHz
	// but is divided down by 2 so we actually have a 2MHz, MCG_SC[FCDIV] default is 2
	// fix outdiv -> cpu 2/1, bus 2/1, flash 2/2
	// config divisors: 2 MHz core, 2 MHz bus, 1 MHz flash
  #if defined(KINETISK)
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(1);
  #elif defined(KINETISL)
	// config divisors: 2 MHz core, 1 MHz bus, 1 MHz flash
	SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1);
  #endif
#else
#error "Error, F_CPU must be 256, 240, 216, 192, 180, 168, 144, 120, 96, 72, 48, 24, 16, 8, 4, or 2 MHz"
#endif

#if F_CPU > 16000000
	// switch to PLL as clock source, FLL input = 16 MHz / 512
	MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4);
	// wait for PLL clock to be used
	while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ;
	// now we're in PEE mode
	// trace is CPU clock, CLKOUT=OSCERCLK0
	#if defined(KINETISK)
	#if F_CPU == 256000000 || F_CPU == 216000000 || F_CPU == 180000000
	// USB uses IRC48
	SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_IRC48SEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6);
	#else
	// USB uses PLL clock
	SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6);
	#endif
	#elif defined(KINETISL)
	SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_CLKOUTSEL(6)
		| SIM_SOPT2_UART0SRC(1) | SIM_SOPT2_TPMSRC(1);
	#endif
#else
    
#if F_CPU == 2000000
	SIM_SOPT2 = SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(4) | SIM_SOPT2_UART0SRC(3);
#else
    SIM_SOPT2 = SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6) | SIM_SOPT2_UART0SRC(2);
#endif
    
#endif

#if F_CPU <= 2000000
    // since we are not going into "stop mode" i removed it
	SMC_PMCTRL = SMC_PMCTRL_RUNM(2); // VLPR mode :-)
#endif

#if defined(__MK66FX1M0__)
	// If the RTC oscillator isn't enabled, get it started.  For Teensy 3.6
	// we don't do this early.  See comment above about slow rising power.
	if (!(RTC_CR & RTC_CR_OSCE)) {
		RTC_SR = 0;
		RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
	}
#endif

	// initialize the SysTick counter
	SYST_RVR = (F_CPU / 1000) - 1;
	SYST_CVR = 0;
	SYST_CSR = SYST_CSR_CLKSOURCE | SYST_CSR_TICKINT | SYST_CSR_ENABLE;
	SCB_SHPR3 = 0x20200000;  // Systick = priority 32

	//init_pins();
	__enable_irq();

	_init_Teensyduino_internal_();

#if defined(KINETISK)
	// RTC initialization
	if (RTC_SR & RTC_SR_TIF) {
		// this code will normally run on a power-up reset
		// when VBAT has detected a power-up.  Normally our
		// compiled-in time will be stale.  Write a special
		// flag into the VBAT register file indicating the
		// RTC is set with known-stale time and should be
		// updated when fresh time is known.
		#if ARDUINO >= 10600
		rtc_set((uint32_t)&__rtc_localtime);
		#else
		rtc_set(TIME_T);
		#endif
		*(uint32_t *)0x4003E01C = 0x5A94C3A5;
	}
	if ((RCM_SRS0 & RCM_SRS0_PIN) && (*(uint32_t *)0x4003E01C == 0x5A94C3A5)) {
		// this code should run immediately after an upload
		// where the Teensy Loader causes the Mini54 to reset.
		// Our compiled-in time will be very fresh, so set
		// the RTC with this, and clear the VBAT resister file
		// data so we don't mess with the time after it's been
		// set well.
		#if ARDUINO >= 10600
		rtc_set((uint32_t)&__rtc_localtime);
		#else
		rtc_set(TIME_T);
		#endif
		*(uint32_t *)0x4003E01C = 0;
	}
#endif

	__libc_init_array();

	startup_late_hook();
	main();
	
	while (1) ;
}

char *__brkval = (char *)&_ebss;

#ifndef STACK_MARGIN
#if defined(__MKL26Z64__)
#define STACK_MARGIN  512
#elif defined(__MK20DX128__)
#define STACK_MARGIN  1024
#elif defined(__MK20DX256__)
#define STACK_MARGIN  4096
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define STACK_MARGIN  8192
#endif
#endif

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"

void * _sbrk(int incr)
{
	char *prev, *stack;

	prev = __brkval;
	if (incr != 0) {
		__asm__ volatile("mov %0, sp" : "=r" (stack) ::);
		if (prev + incr >= stack - STACK_MARGIN) {
			errno = ENOMEM;
			return (void *)-1;
		}
		__brkval = prev + incr;
	}
	return prev;
}

__attribute__((weak)) 
int _read(int file, char *ptr, int len)
{
	return 0;
}

__attribute__((weak)) 
int _close(int fd)
{
	return -1;
}

#include <sys/stat.h>

__attribute__((weak)) 
int _fstat(int fd, struct stat *st)
{
	st->st_mode = S_IFCHR;
	return 0;
}

__attribute__((weak)) 
int _isatty(int fd)
{
	return 1;
}

__attribute__((weak)) 
int _lseek(int fd, long long offset, int whence)
{
	return -1;
}

__attribute__((weak)) 
void _exit(int status)
{
	while (1);
}

__attribute__((weak)) 
void __cxa_pure_virtual()
{
	while (1);
}

__attribute__((weak)) 
int __cxa_guard_acquire (char *g) 
{
	return !(*g);
}

__attribute__((weak)) 
void __cxa_guard_release(char *g)
{
	*g = 1;
}

__attribute__((weak))
void abort(void)
{
	while (1) ;
}

#pragma GCC diagnostic pop

int nvic_execution_priority(void)
{
	uint32_t priority=256;
	uint32_t primask, faultmask, basepri, ipsr;

	// full algorithm in ARM DDI0403D, page B1-639
	// this isn't quite complete, but hopefully good enough
	__asm__ volatile("mrs %0, faultmask\n" : "=r" (faultmask)::);
	if (faultmask) return -1;
	__asm__ volatile("mrs %0, primask\n" : "=r" (primask)::);
	if (primask) return 0;
	__asm__ volatile("mrs %0, ipsr\n" : "=r" (ipsr)::);
	if (ipsr) {
		if (ipsr < 16) priority = 0; // could be non-zero
		else priority = NVIC_GET_PRIORITY(ipsr - 16);
	}
	__asm__ volatile("mrs %0, basepri\n" : "=r" (basepri)::);
	if (basepri > 0 && basepri < priority) priority = basepri;
	return priority;
}


#if defined(HAS_KINETIS_HSRUN) && F_CPU > 120000000
int kinetis_hsrun_disable(void)
{
	if (SMC_PMSTAT == SMC_PMSTAT_HSRUN) {
		// First, reduce the CPU clock speed, but do not change
		// the peripheral speed (F_BUS).  Serial1 & Serial2 baud
		// rates will be impacted, but most other peripherals
		// will continue functioning at the same speed.
		#if F_CPU == 256000000 && F_BUS == 64000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST
		#elif F_CPU == 256000000 && F_BUS == 128000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST
		#elif F_CPU == 240000000 && F_BUS == 60000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
		#elif F_CPU == 240000000 && F_BUS == 80000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
		#elif F_CPU == 240000000 && F_BUS == 120000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
		#elif F_CPU == 216000000 && F_BUS == 54000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
		#elif F_CPU == 216000000 && F_BUS == 72000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
		#elif F_CPU == 216000000 && F_BUS == 108000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
		#elif F_CPU == 192000000 && F_BUS == 48000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
		#elif F_CPU == 192000000 && F_BUS == 64000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
		#elif F_CPU == 192000000 && F_BUS == 96000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
		#elif F_CPU == 180000000 && F_BUS == 60000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
		#elif F_CPU == 180000000 && F_BUS == 90000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
		#elif F_CPU == 168000000 && F_BUS == 56000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
		#elif F_CPU == 144000000 && F_BUS == 48000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
		#elif F_CPU == 144000000 && F_BUS == 72000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok
		#else
			return 0;
		#endif
		// Then turn off HSRUN mode
		SMC_PMCTRL = SMC_PMCTRL_RUNM(0);
		while (SMC_PMSTAT == SMC_PMSTAT_HSRUN) ; // wait
		return 1;
	}
	return 0;
}

int kinetis_hsrun_enable(void)
{
	if (SMC_PMSTAT == SMC_PMSTAT_RUN) {
		// Turn HSRUN mode on
		SMC_PMCTRL = SMC_PMCTRL_RUNM(3);
		while (SMC_PMSTAT != SMC_PMSTAT_HSRUN) {;} // wait
		// Then configure clock for full speed
		#if F_CPU == 256000000 && F_BUS == 64000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
		#elif F_CPU == 256000000 && F_BUS == 128000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
		#elif F_CPU == 240000000 && F_BUS == 60000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
		#elif F_CPU == 240000000 && F_BUS == 80000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
		#elif F_CPU == 240000000 && F_BUS == 120000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
		#elif F_CPU == 216000000 && F_BUS == 54000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
		#elif F_CPU == 216000000 && F_BUS == 72000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
		#elif F_CPU == 216000000 && F_BUS == 108000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
		#elif F_CPU == 192000000 && F_BUS == 48000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
		#elif F_CPU == 192000000 && F_BUS == 64000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
		#elif F_CPU == 192000000 && F_BUS == 96000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
		#elif F_CPU == 180000000 && F_BUS == 60000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
		#elif F_CPU == 180000000 && F_BUS == 90000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
		#elif F_CPU == 168000000 && F_BUS == 56000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
		#elif F_CPU == 144000000 && F_BUS == 48000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
		#elif F_CPU == 144000000 && F_BUS == 72000000
			SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
		#else
			return 0;
		#endif
		return 1;
	}
	return 0;
}
#endif // HAS_KINETIS_HSRUN && F_CPU > 120000000