/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "usb_dev.h" #include "usb_serial.h" #include "core_pins.h"// for delay() //#include "HardwareSerial.h" #include // for memcpy() #include "avr/pgmspace.h" // for PROGMEM, DMAMEM, FASTRUN #include "debug/printf.h" #include "core_pins.h" // defined by usb_dev.h -> usb_desc.h #if defined(CDC_STATUS_INTERFACE) && defined(CDC_DATA_INTERFACE) //#if F_CPU >= 20000000 uint32_t usb_cdc_line_coding[2]; volatile uint32_t usb_cdc_line_rtsdtr_millis; volatile uint8_t usb_cdc_line_rtsdtr=0; volatile uint8_t usb_cdc_transmit_flush_timer=0; static volatile uint8_t tx_noautoflush=0; extern volatile uint8_t usb_high_speed; // TODO: should be 2 different timeouts, high speed (480) vs full speed (12) #define TRANSMIT_FLUSH_TIMEOUT 75 /* in microseconds */ static void timer_config(void (*callback)(void), uint32_t microseconds); static void timer_start_oneshot(); static void timer_stop(); static void usb_serial_flush_callback(void); #define TX_NUM 4 #define TX_SIZE 2048 /* should be a multiple of CDC_TX_SIZE */ static transfer_t tx_transfer[TX_NUM] __attribute__ ((used, aligned(32))); DMAMEM static uint8_t txbuffer[TX_SIZE * TX_NUM]; static uint8_t tx_head=0; static uint16_t tx_available=0; static uint16_t tx_packet_size=0; #define RX_NUM 3 static transfer_t rx_transfer[RX_NUM] __attribute__ ((used, aligned(32))); static uint8_t rx_buffer[RX_NUM * CDC_RX_SIZE_480]; static uint16_t rx_count[RX_NUM]; static uint16_t rx_index[RX_NUM]; static uint16_t rx_packet_size=0; static volatile uint8_t rx_head; static volatile uint8_t rx_tail; static uint8_t rx_list[RX_NUM + 1]; static volatile uint32_t rx_available; static void rx_queue_transfer(int i); static void rx_event(transfer_t *t); void usb_serial_reset(void) { printf("usb_serial_reset\n"); // deallocate all transfer descriptors } void usb_serial_configure(void) { int i; printf("usb_serial_configure\n"); if (usb_high_speed) { tx_packet_size = CDC_TX_SIZE_480; rx_packet_size = CDC_RX_SIZE_480; } else { tx_packet_size = CDC_TX_SIZE_12; rx_packet_size = CDC_RX_SIZE_12; } memset(tx_transfer, 0, sizeof(tx_transfer)); tx_head = 0; tx_available = 0; memset(rx_transfer, 0, sizeof(rx_transfer)); memset(rx_count, 0, sizeof(rx_count)); memset(rx_index, 0, sizeof(rx_index)); rx_head = 0; rx_tail = 0; rx_available = 0; usb_config_tx(CDC_ACM_ENDPOINT, CDC_ACM_SIZE, 0, NULL); // size same 12 & 480 usb_config_rx(CDC_RX_ENDPOINT, rx_packet_size, 0, rx_event); usb_config_tx(CDC_TX_ENDPOINT, tx_packet_size, 1, NULL); for (i=0; i < RX_NUM; i++) rx_queue_transfer(i); timer_config(usb_serial_flush_callback, TRANSMIT_FLUSH_TIMEOUT); } /*************************************************************************/ /** Receive **/ /*************************************************************************/ static void rx_queue_transfer(int i) { NVIC_DISABLE_IRQ(IRQ_USB1); printf("rx queue i=%d\n", i); usb_prepare_transfer(rx_transfer + i, rx_buffer + i * CDC_RX_SIZE_480, rx_packet_size, i); usb_receive(CDC_RX_ENDPOINT, rx_transfer + i); NVIC_ENABLE_IRQ(IRQ_USB1); } // called by USB interrupt when any packet is received static void rx_event(transfer_t *t) { int len = rx_packet_size - ((t->status >> 16) & 0x7FFF); int i = t->callback_param; printf("rx event, len=%d, i=%d\n", len, i); if (len > 0) { // received a packet with data uint32_t head = rx_head; if (head != rx_tail) { // a previous packet is still buffered uint32_t ii = rx_list[head]; uint32_t count = rx_count[ii]; if (len <= CDC_RX_SIZE_480 - count) { // previous buffer has enough free space for this packet's data memcpy(rx_buffer + ii * CDC_RX_SIZE_480 + count, rx_buffer + i * CDC_RX_SIZE_480, len); rx_count[ii] = count + len; rx_available += len; rx_queue_transfer(i); // TODO: trigger serialEvent return; } } // add this packet to rx_list rx_count[i] = len; rx_index[i] = 0; if (++head > RX_NUM) head = 0; rx_list[head] = i; rx_head = head; rx_available += len; // TODO: trigger serialEvent } else { // received a zero length packet rx_queue_transfer(i); } } //static int maxtimes=0; // read a block of bytes to a buffer int usb_serial_read(void *buffer, uint32_t size) { uint8_t *p = (uint8_t *)buffer; uint32_t count=0; NVIC_DISABLE_IRQ(IRQ_USB1); //if (++maxtimes > 15) while (1) ; uint32_t tail = rx_tail; //printf("usb_serial_read, size=%d, tail=%d, head=%d\n", size, tail, rx_head); while (count < size && tail != rx_head) { if (++tail > RX_NUM) tail = 0; uint32_t i = rx_list[tail]; uint32_t len = size - count; uint32_t avail = rx_count[i] - rx_index[i]; //printf("usb_serial_read, count=%d, size=%d, i=%d, index=%d, len=%d, avail=%d, c=%c\n", //count, size, i, rx_index[i], len, avail, rx_buffer[i * CDC_RX_SIZE_480]); if (avail > len) { // partially consume this packet memcpy(p, rx_buffer + i * CDC_RX_SIZE_480 + rx_index[i], len); rx_available -= len; rx_index[i] += len; count += len; } else { // fully consume this packet memcpy(p, rx_buffer + i * CDC_RX_SIZE_480 + rx_index[i], avail); p += avail; rx_available -= avail; count += avail; rx_tail = tail; rx_queue_transfer(i); } } NVIC_ENABLE_IRQ(IRQ_USB1); return count; } // peek at the next character, or -1 if nothing received int usb_serial_peekchar(void) { uint32_t tail = rx_tail; if (tail == rx_head) return -1; if (++tail > RX_NUM) tail = 0; uint32_t i = rx_list[tail]; return rx_buffer[i * CDC_RX_SIZE_480 + rx_index[i]]; } // number of bytes available in the receive buffer int usb_serial_available(void) { return rx_available; } // discard any buffered input void usb_serial_flush_input(void) { uint32_t tail = rx_tail; while (tail != rx_head) { if (++tail > RX_NUM) tail = 0; uint32_t i = rx_list[tail]; rx_available -= rx_count[i] - rx_index[i]; rx_queue_transfer(i); rx_tail = tail; } } // get the next character, or -1 if nothing received int usb_serial_getchar(void) { uint8_t c; if (usb_serial_read(&c, 1)) return c; return -1; } /*************************************************************************/ /** Transmit **/ /*************************************************************************/ // When the PC isn't listening, how long do we wait before discarding data? If this is // too short, we risk losing data during the stalls that are common with ordinary desktop // software. If it's too long, we stall the user's program when no software is running. #define TX_TIMEOUT_MSEC 120 // When we've suffered the transmit timeout, don't wait again until the computer // begins accepting data. If no software is running to receive, we'll just discard // data as rapidly as Serial.print() can generate it, until there's something to // actually receive it. static uint8_t transmit_previous_timeout=0; // transmit a character. 0 returned on success, -1 on error int usb_serial_putchar(uint8_t c) { return usb_serial_write(&c, 1); } extern volatile uint32_t systick_millis_count; static void timer_config(void (*callback)(void), uint32_t microseconds); static void timer_start_oneshot(); static void timer_stop(); static void timer_config(void (*callback)(void), uint32_t microseconds) { usb_timer0_callback = callback; USB1_GPTIMER0CTRL = 0; USB1_GPTIMER0LD = microseconds - 1; USB1_USBINTR |= USB_USBINTR_TIE0; } static void timer_start_oneshot(void) { // restarts timer if already running (retriggerable one-shot) USB1_GPTIMER0CTRL = USB_GPTIMERCTRL_GPTRUN | USB_GPTIMERCTRL_GPTRST; } static void timer_stop(void) { USB1_GPTIMER0CTRL = 0; } int usb_serial_write(const void *buffer, uint32_t size) { uint32_t sent=0; const uint8_t *data = (const uint8_t *)buffer; if (!usb_configuration) return 0; while (size > 0) { transfer_t *xfer = tx_transfer + tx_head; int waiting=0; uint32_t wait_begin_at=0; while (!tx_available) { //digitalWriteFast(3, HIGH); uint32_t status = usb_transfer_status(xfer); if (!(status & 0x80)) { if (status & 0x68) { // TODO: what if status has errors??? printf("ERROR status = %x, i=%d, ms=%u\n", status, tx_head, systick_millis_count); } tx_available = TX_SIZE; transmit_previous_timeout = 0; break; } if (!waiting) { wait_begin_at = systick_millis_count; waiting = 1; } if (transmit_previous_timeout) return sent; if (systick_millis_count - wait_begin_at > TX_TIMEOUT_MSEC) { // waited too long, assume the USB host isn't listening transmit_previous_timeout = 1; return sent; //printf("\nstop, waited too long\n"); //printf("status = %x\n", status); //printf("tx head=%d\n", tx_head); //printf("TXFILLTUNING=%08lX\n", USB1_TXFILLTUNING); //usb_print_transfer_log(); //while (1) ; } if (!usb_configuration) return sent; yield(); } //digitalWriteFast(3, LOW); uint8_t *txdata = txbuffer + (tx_head * TX_SIZE) + (TX_SIZE - tx_available); if (size >= tx_available) { memcpy(txdata, data, tx_available); //*(txbuffer + (tx_head * TX_SIZE)) = 'A' + tx_head; // to see which buffer //*(txbuffer + (tx_head * TX_SIZE) + 1) = ' '; // really see it uint8_t *txbuf = txbuffer + (tx_head * TX_SIZE); usb_prepare_transfer(xfer, txbuf, TX_SIZE, 0); arm_dcache_flush_delete(txbuf, TX_SIZE); usb_transmit(CDC_TX_ENDPOINT, xfer); if (++tx_head >= TX_NUM) tx_head = 0; size -= tx_available; sent += tx_available; data += tx_available; tx_available = 0; timer_stop(); } else { memcpy(txdata, data, size); tx_available -= size; sent += size; size = 0; timer_start_oneshot(); } } return sent; } int usb_serial_write_buffer_free(void) { uint32_t sum = 0; tx_noautoflush = 1; for (uint32_t i=0; i < TX_NUM; i++) { if (i == tx_head) continue; if (!(usb_transfer_status(tx_transfer + i) & 0x80)) sum += TX_SIZE; } tx_noautoflush = 0; return sum; } void usb_serial_flush_output(void) { if (!usb_configuration) return; if (tx_available == 0) return; tx_noautoflush = 1; transfer_t *xfer = tx_transfer + tx_head; uint8_t *txbuf = txbuffer + (tx_head * TX_SIZE); uint32_t txnum = TX_SIZE - tx_available; usb_prepare_transfer(xfer, txbuf, txnum, 0); arm_dcache_flush_delete(txbuf, txnum); usb_transmit(CDC_TX_ENDPOINT, xfer); if (++tx_head >= TX_NUM) tx_head = 0; tx_available = 0; tx_noautoflush = 0; } static void usb_serial_flush_callback(void) { if (tx_noautoflush) return; if (!usb_configuration) return; if (tx_available == 0) return; //printf("flush callback, %d bytes\n", TX_SIZE - tx_available); transfer_t *xfer = tx_transfer + tx_head; uint8_t *txbuf = txbuffer + (tx_head * TX_SIZE); uint32_t txnum = TX_SIZE - tx_available; usb_prepare_transfer(xfer, txbuf, txnum, 0); arm_dcache_flush_delete(txbuf, txnum); usb_transmit(CDC_TX_ENDPOINT, xfer); if (++tx_head >= TX_NUM) tx_head = 0; tx_available = 0; } //#endif // F_CPU #endif // CDC_STATUS_INTERFACE && CDC_DATA_INTERFACE