/* USB API for Teensy USB Development Board * http://www.pjrc.com/teensy/teensyduino.html * Copyright (c) 2008 PJRC.COM, LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <avr/io.h> #include <avr/pgmspace.h> #include <stdint.h> #include "usb_common.h" #include "usb_private.h" #include "usb_api.h" #include "wiring.h" void usb_midi_class::sendNoteOff(uint8_t note, uint8_t velocity, uint8_t channel) { send_raw(0x08, 0x80 | ((channel - 1) & 0x0F), note & 0x7F, velocity & 0x7F); } void usb_midi_class::sendNoteOn(uint8_t note, uint8_t velocity, uint8_t channel) { send_raw(0x09, 0x90 | ((channel - 1) & 0x0F), note & 0x7F, velocity & 0x7F); } void usb_midi_class::sendPolyPressure(uint8_t note, uint8_t pressure, uint8_t channel) { send_raw(0x0A, 0xA0 | ((channel - 1) & 0x0F), note & 0x7F, pressure & 0x7F); } void usb_midi_class::sendControlChange(uint8_t control, uint8_t value, uint8_t channel) { send_raw(0x0B, 0xB0 | ((channel - 1) & 0x0F), control & 0x7F, value & 0x7F); } void usb_midi_class::sendProgramChange(uint8_t program, uint8_t channel) { send_raw(0x0C, 0xC0 | ((channel - 1) & 0x0F), program & 0x7F, 0); } void usb_midi_class::sendAfterTouch(uint8_t pressure, uint8_t channel) { send_raw(0x0D, 0xD0 | ((channel - 1) & 0x0F), pressure & 0x7F, 0); } void usb_midi_class::sendPitchBend(uint16_t value, uint8_t channel) { send_raw(0x0E, 0xE0 | ((channel - 1) & 0x0F), value & 0x7F, (value >> 7) & 0x7F); } void usb_midi_class::sendSysEx(uint8_t length, const uint8_t *data) { // TODO: MIDI 2.5 lib automatically adds start and stop bytes while (length > 3) { send_raw(0x04, data[0], data[1], data[2]); data += 3; length -= 3; } if (length == 3) { send_raw(0x07, data[0], data[1], data[2]); } else if (length == 2) { send_raw(0x06, data[0], data[1], 0); } else if (length == 1) { send_raw(0x05, data[0], 0, 0); } } void usb_midi_class::send_raw(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { uint8_t intr_state, timeout; if (!usb_configuration) return; intr_state = SREG; cli(); UENUM = MIDI_TX_ENDPOINT; timeout = UDFNUML + 2; while (1) { // are we ready to transmit? if (UEINTX & (1<<RWAL)) break; SREG = intr_state; if (UDFNUML == timeout) return; if (!usb_configuration) return; intr_state = SREG; cli(); UENUM = MIDI_TX_ENDPOINT; } UEDATX = b0; UEDATX = b1; UEDATX = b2; UEDATX = b3; if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A; SREG = intr_state; } void usb_midi_class::send_now(void) { uint8_t intr_state; if (!usb_configuration) return; intr_state = SREG; cli(); UENUM = MIDI_TX_ENDPOINT; if (UEBCLX != MIDI_TX_SIZE) { UEINTX = 0x3A; } SREG = intr_state; } // Convert 10 bit linear measurements to a logarthmic scale // suitable for sending as MIDI velocity numbers. The // "range" parameter should be probably be between 30 to 60, // with 36 probably a good default. // // This function uses fast 16 bit unsigned integer math. :-) // uint8_t usb_midi_class::analog2velocity(uint16_t val, uint8_t range) { #if 0 if (val == 0) return 0; float scale = 1.0 + (20.0 / (float)range) * log10((float)val / 1023.0); if (scale < 0) return 0; return 127 * scale; #else uint8_t i, e, b; uint16_t s=0; static const prog_uint8_t table[] = {225,124,65,34,17,9,4,2,1}; if (val == 0) return 0; if (val >= 1023) return 127; for (e=0; (val & 512) == 0; e++) val <<= 1; for (i=0; i<9; i++) { // cordic algorithm uint16_t x = val + (val >> (i + 1)); if (x < 1024) { val = x; s += pgm_read_byte(table + i); } } s += e * 385; s <<= 4; s += (range >> 1); s /= range; if (s >= 1024) return 0; s = 1024 - s; if (s > 511) { s -= 512; b = 64; } else if (s > 255) { s -= 256; b = 32; } else { b = 0; } return b + ((s * 127) >> 10); #endif } bool usb_midi_class::read(uint8_t channel) { uint8_t c, intr_state; uint8_t b0, b1, b2, b3, type1, type2; intr_state = SREG; cli(); if (!usb_configuration) { SREG = intr_state; return false; } UENUM = MIDI_RX_ENDPOINT; retry: c = UEINTX; if (!(c & (1<<RWAL))) { if (c & (1<<RXOUTI)) { UEINTX = 0x6B; goto retry; } SREG = intr_state; return false; } b0 = UEDATX; b1 = UEDATX; b2 = UEDATX; b3 = UEDATX; if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B; SREG = intr_state; type1 = b0 & 0x0F; type2 = b1 & 0xF0; c = (b1 & 0x0F) + 1; if (type1 >= 0x08 && type1 <= 0x0E) { if (channel && channel != c) { // ignore other channels when user wants single channel read return false; } if (type1 == 0x08 && type2 == 0x80) { msg_type = 0; // Note off if (handleNoteOff) (*handleNoteOff)(c, b2, b3); goto return_message; } if (type1 == 0x09 && type2 == 0x90) { if (b3) { msg_type = 1; // Note on if (handleNoteOn) (*handleNoteOn)(c, b2, b3); } else { msg_type = 0; // Note off if (handleNoteOff) (*handleNoteOff)(c, b2, b3); } goto return_message; } if (type1 == 0x0A && type2 == 0xA0) { msg_type = 2; // Poly Pressure if (handleVelocityChange) (*handleVelocityChange)(c, b2, b3); goto return_message; } if (type1 == 0x0B && type2 == 0xB0) { msg_type = 3; // Control Change if (handleControlChange) (*handleControlChange)(c, b2, b3); goto return_message; } if (type1 == 0x0C && type2 == 0xC0) { msg_type = 4; // Program Change if (handleProgramChange) (*handleProgramChange)(c, b2); goto return_message; } if (type1 == 0x0D && type2 == 0xD0) { msg_type = 5; // After Touch if (handleAfterTouch) (*handleAfterTouch)(c, b2); goto return_message; } if (type1 == 0x0E && type2 == 0xE0) { msg_type = 6; // Pitch Bend if (handlePitchChange) (*handlePitchChange)(c, (b2 & 0x7F) | ((b3 & 0x7F) << 7)); goto return_message; } return false; return_message: // only update these when returning true for a parsed message // all other return cases will preserve these user-visible values msg_channel = c; msg_data1 = b2; msg_data2 = b3; return true; } if (type1 == 0x04) { read_sysex_byte(b1); read_sysex_byte(b2); read_sysex_byte(b3); return false; } if (type1 >= 0x05 && type1 <= 0x07) { read_sysex_byte(b1); if (type1 >= 0x06) read_sysex_byte(b2); if (type1 == 0x07) read_sysex_byte(b3); msg_data1 = msg_sysex_len; msg_sysex_len = 0; msg_type = 7; return true; } if (type1 == 0x0F) { // TODO: does this need to be a full MIDI parser? // What software actually uses this message type in practice? if (msg_sysex_len > 0) { // From David Sorlien, dsorlien at gmail.com, http://axe4live.wordpress.com // OSX sometimes uses Single Byte Unparsed to // send bytes in the middle of a SYSEX message. read_sysex_byte(b1); } else { // From Sebastian Tomczak, seb.tomczak at gmail.com // http://little-scale.blogspot.com/2011/08/usb-midi-game-boy-sync-for-16.html msg_type = 8; if (handleRealTimeSystem) (*handleRealTimeSystem)(b1); goto return_message; } } return false; } void usb_midi_class::read_sysex_byte(uint8_t b) { if (msg_sysex_len < USB_MIDI_SYSEX_MAX) { msg_sysex[msg_sysex_len++] = b; } } static volatile uint8_t prev_byte=0; void usb_serial_class::begin(long speed) { // make sure USB is initialized usb_init(); uint16_t begin_wait = (uint16_t)millis(); while (1) { if (usb_configuration) { delay(200); // a little time for host to load a driver return; } if (usb_suspended) { uint16_t begin_suspend = (uint16_t)millis(); while (usb_suspended) { // must remain suspended for a while, because // normal USB enumeration causes brief suspend // states, typically under 0.1 second if ((uint16_t)millis() - begin_suspend > 250) { return; } } } // ... or a timout (powered by a USB power adaptor that // wiggles the data lines to keep a USB device charging) if ((uint16_t)millis() - begin_wait > 2500) return; } prev_byte = 0; } void usb_serial_class::end() { usb_shutdown(); delay(25); } // number of bytes available in the receive buffer int usb_serial_class::available() { uint8_t c; c = prev_byte; // assume 1 byte static volatile access is atomic if (c) return 1; c = readnext(); if (c) { prev_byte = c; return 1; } return 0; } // get the next character, or -1 if nothing received int usb_serial_class::read() { uint8_t c; c = prev_byte; if (c) { prev_byte = 0; return c; } c = readnext(); if (c) return c; return -1; } int usb_serial_class::peek() { uint8_t c; c = prev_byte; if (c) return c; c = readnext(); if (c) { prev_byte = c; return c; } return -1; } // get the next character, or 0 if nothing uint8_t usb_serial_class::readnext(void) { uint8_t c, intr_state; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); if (!usb_configuration) { SREG = intr_state; return 0; } UENUM = DEBUG_RX_ENDPOINT; try_again: if (!(UEINTX & (1<<RWAL))) { // no packet in buffer SREG = intr_state; return 0; } // take one byte out of the buffer c = UEDATX; if (c == 0) { // if we see a zero, discard it and // discard the rest of this packet UEINTX = 0x6B; goto try_again; } // if this drained the buffer, release it if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B; SREG = intr_state; return c; } // discard any buffered input void usb_serial_class::flush() { uint8_t intr_state; if (usb_configuration) { intr_state = SREG; cli(); UENUM = DEBUG_RX_ENDPOINT; while ((UEINTX & (1<<RWAL))) { UEINTX = 0x6B; } SREG = intr_state; } prev_byte = 0; } // transmit a character. #if ARDUINO >= 100 size_t usb_serial_class::write(uint8_t c) #else #define setWriteError() void usb_serial_class::write(uint8_t c) #endif { //static uint8_t previous_timeout=0; uint8_t timeout, intr_state; // if we're not online (enumerated and configured), error if (!usb_configuration) goto error; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); UENUM = DEBUG_TX_ENDPOINT; // if we gave up due to timeout before, don't wait again #if 0 // this seems to be causig a lockup... why???? if (previous_timeout) { if (!(UEINTX & (1<<RWAL))) { SREG = intr_state; return; } previous_timeout = 0; } #endif // wait for the FIFO to be ready to accept data timeout = UDFNUML + TRANSMIT_TIMEOUT; while (1) { // are we ready to transmit? if (UEINTX & (1<<RWAL)) break; SREG = intr_state; // have we waited too long? This happens if the user // is not running an application that is listening if (UDFNUML == timeout) { //previous_timeout = 1; goto error; } // has the USB gone offline? if (!usb_configuration) goto error; // get ready to try checking again intr_state = SREG; cli(); UENUM = DEBUG_TX_ENDPOINT; } // actually write the byte into the FIFO UEDATX = c; // if this completed a packet, transmit it now! if (!(UEINTX & (1<<RWAL))) { UEINTX = 0x3A; debug_flush_timer = 0; } else { debug_flush_timer = TRANSMIT_FLUSH_TIMEOUT; } SREG = intr_state; #if ARDUINO >= 100 return 1; #endif error: #if ARDUINO >= 100 setWriteError(); return 0; #else return; #endif } // These are Teensy-specific extensions to the Serial object // immediately transmit any buffered output. // This doesn't actually transmit the data - that is impossible! // USB devices only transmit when the host allows, so the best // we can do is release the FIFO buffer for when the host wants it void usb_serial_class::send_now(void) { uint8_t intr_state; intr_state = SREG; cli(); if (debug_flush_timer) { UENUM = DEBUG_TX_ENDPOINT; while ((UEINTX & (1<<RWAL))) { UEDATX = 0; } UEINTX = 0x3A; debug_flush_timer = 0; } SREG = intr_state; } uint32_t usb_serial_class::baud(void) { return ((uint32_t)DEBUG_TX_SIZE * 10000 / DEBUG_TX_INTERVAL); } uint8_t usb_serial_class::stopbits(void) { return 1; } uint8_t usb_serial_class::paritytype(void) { return 0; } uint8_t usb_serial_class::numbits(void) { return 8; } uint8_t usb_serial_class::dtr(void) { return 1; } uint8_t usb_serial_class::rts(void) { return 1; } usb_serial_class::operator bool() { if (usb_configuration) return true; return false; } // Preinstantiate Objects ////////////////////////////////////////////////////// usb_serial_class Serial = usb_serial_class(); usb_midi_class usbMIDI = usb_midi_class();