/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "kinetis.h" #include "core_pins.h" #include "HardwareSerial.h" #include //////////////////////////////////////////////////////////////// // Tunable parameters (relatively safe to edit these numbers) //////////////////////////////////////////////////////////////// #ifndef SERIAL2_TX_BUFFER_SIZE #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer #endif #ifndef SERIAL2_RX_BUFFER_SIZE #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer #endif #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest //////////////////////////////////////////////////////////////// // changes not recommended below this point.... //////////////////////////////////////////////////////////////// #ifdef SERIAL_9BIT_SUPPORT static uint8_t use9Bits = 0; #define BUFTYPE uint16_t #else #define BUFTYPE uint8_t #define use9Bits 0 #endif static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE]; static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE]; static volatile BUFTYPE *rx_buffer_storage_ = NULL; static volatile BUFTYPE *tx_buffer_storage_ = NULL; static size_t tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE; static size_t rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE; static size_t rts_low_watermark_ = RTS_LOW_WATERMARK; static size_t rts_high_watermark_ = RTS_HIGH_WATERMARK; static volatile uint8_t transmitting = 0; #if defined(KINETISK) static volatile uint8_t *transmit_pin=NULL; #define transmit_assert() *transmit_pin = 1 #define transmit_deassert() *transmit_pin = 0 static volatile uint8_t *rts_pin=NULL; #define rts_assert() *rts_pin = 0 #define rts_deassert() *rts_pin = 1 #elif defined(KINETISL) static volatile uint8_t *transmit_pin=NULL; static uint8_t transmit_mask=0; #define transmit_assert() *(transmit_pin+4) = transmit_mask; #define transmit_deassert() *(transmit_pin+8) = transmit_mask; static volatile uint8_t *rts_pin=NULL; static uint8_t rts_mask=0; #define rts_assert() *(rts_pin+8) = rts_mask; #define rts_deassert() *(rts_pin+4) = rts_mask; #endif #if SERIAL2_TX_BUFFER_SIZE > 65535 static volatile uint32_t tx_buffer_head = 0; static volatile uint32_t tx_buffer_tail = 0; #elif SERIAL2_TX_BUFFER_SIZE > 255 static volatile uint16_t tx_buffer_head = 0; static volatile uint16_t tx_buffer_tail = 0; #else static volatile uint8_t tx_buffer_head = 0; static volatile uint8_t tx_buffer_tail = 0; #endif #if SERIAL2_RX_BUFFER_SIZE > 65535 static volatile uint32_t rx_buffer_head = 0; static volatile uint32_t rx_buffer_tail = 0; #elif SERIAL2_RX_BUFFER_SIZE > 255 static volatile uint16_t rx_buffer_head = 0; static volatile uint16_t rx_buffer_tail = 0; #else static volatile uint8_t rx_buffer_head = 0; static volatile uint8_t rx_buffer_tail = 0; #endif #if defined(KINETISK) static uint8_t rx_pin_num = 9; static uint8_t tx_pin_num = 10; #endif // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer #ifdef HAS_KINETISK_UART1_FIFO #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE #else #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE #endif #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE #define C2_TX_INACTIVE C2_ENABLE void serial2_begin(uint32_t divisor) { SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband rx_buffer_head = 0; rx_buffer_tail = 0; tx_buffer_head = 0; tx_buffer_tail = 0; transmitting = 0; #if defined(KINETISK) switch (rx_pin_num) { case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6 case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #endif } switch (tx_pin_num) { case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break; #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break; #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6 case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break; #endif } #elif defined(KINETISL) CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); #endif #if defined(HAS_KINETISK_UART1) if (divisor < 32) divisor = 32; UART1_BDH = (divisor >> 13) & 0x1F; UART1_BDL = (divisor >> 5) & 0xFF; UART1_C4 = divisor & 0x1F; #ifdef HAS_KINETISK_UART1_FIFO UART1_C1 = UART_C1_ILT; UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE; #else UART1_C1 = 0; UART1_PFIFO = 0; #endif #elif defined(HAS_KINETISL_UART1) if (divisor < 1) divisor = 1; UART1_BDH = (divisor >> 8) & 0x1F; UART1_BDL = divisor & 0xFF; UART1_C1 = 0; #endif UART1_C2 = C2_TX_INACTIVE; NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY); NVIC_ENABLE_IRQ(IRQ_UART1_STATUS); } void serial2_format(uint32_t format) { uint8_t c; c = UART1_C1; c = (c & ~0x13) | (format & 0x03); // configure parity if (format & 0x04) c |= 0x10; // 9 bits (might include parity) UART1_C1 = c; if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1 c = UART1_S2 & ~0x10; if (format & 0x10) c |= 0x10; // rx invert UART1_S2 = c; c = UART1_C3 & ~0x10; if (format & 0x20) c |= 0x10; // tx invert UART1_C3 = c; #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL) c = UART1_C4 & 0x1F; if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits) UART1_C4 = c; use9Bits = format & 0x80; #endif #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL) // For T3.5/T3.6/TLC See about turning on 2 stop bit mode if ( format & 0x100) { uint8_t bdl = UART1_BDL; UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud UART1_BDL = bdl; // Says BDH not acted on until BDL is written } #endif } void serial2_end(void) { if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return; while (transmitting) yield(); // wait for buffered data to send NVIC_DISABLE_IRQ(IRQ_UART1_STATUS); UART1_C2 = 0; #if defined(KINETISK) switch (rx_pin_num) { case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3 #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 59: CORE_PIN59_CONFIG = 0; break; #endif } switch (tx_pin_num & 127) { case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4 #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 58: CORE_PIN58_CONFIG = 0; break; #endif } #elif defined(KINETISL) CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3 CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4 #endif UART1_S1; UART1_D; // clear leftover error status rx_buffer_head = 0; rx_buffer_tail = 0; if (rts_pin) rts_deassert(); } void serial2_set_transmit_pin(uint8_t pin) { while (transmitting) ; pinMode(pin, OUTPUT); digitalWrite(pin, LOW); transmit_pin = portOutputRegister(pin); #if defined(KINETISL) transmit_mask = digitalPinToBitMask(pin); #endif } void serial2_set_tx(uint8_t pin, uint8_t opendrain) { #if defined(KINETISK) uint32_t cfg; if (opendrain) pin |= 128; if (pin == tx_pin_num) return; if ((SIM_SCGC4 & SIM_SCGC4_UART1)) { switch (tx_pin_num & 127) { case 10: CORE_PIN10_CONFIG = 0; break; // PTC4 #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 31: CORE_PIN31_CONFIG = 0; break; // PTE0 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 58: CORE_PIN58_CONFIG = 0; break; #endif } if (opendrain) { cfg = PORT_PCR_DSE | PORT_PCR_ODE; } else { cfg = PORT_PCR_DSE | PORT_PCR_SRE; } switch (pin & 127) { case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break; #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break; #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break; #endif } } tx_pin_num = pin; #endif } void serial2_set_rx(uint8_t pin) { #if defined(KINETISK) if (pin == rx_pin_num) return; if ((SIM_SCGC4 & SIM_SCGC4_UART1)) { switch (rx_pin_num) { case 9: CORE_PIN9_CONFIG = 0; break; // PTC3 #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 26: CORE_PIN26_CONFIG = 0; break; // PTE1 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 59: CORE_PIN59_CONFIG = 0; break; #endif } switch (pin) { case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2 case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6 case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break; #endif } } rx_pin_num = pin; #endif } int serial2_set_rts(uint8_t pin) { if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0; if (pin < CORE_NUM_DIGITAL) { rts_pin = portOutputRegister(pin); #if defined(KINETISL) rts_mask = digitalPinToBitMask(pin); #endif pinMode(pin, OUTPUT); rts_assert(); } else { rts_pin = NULL; return 0; } /* if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0; if (pin == 22) { CORE_PIN22_CONFIG = PORT_PCR_MUX(3); } else { UART1_MODEM &= ~UART_MODEM_RXRTSE; return 0; } UART1_MODEM |= UART_MODEM_RXRTSE; */ return 1; } int serial2_set_cts(uint8_t pin) { #if defined(KINETISK) if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0; if (pin == 23) { CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6 } else if (pin == 60) { CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown #endif } else { UART1_MODEM &= ~UART_MODEM_TXCTSE; return 0; } UART1_MODEM |= UART_MODEM_TXCTSE; return 1; #else return 0; #endif } void serial2_putchar(uint32_t c) { uint32_t head, n; if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return; if (transmit_pin) transmit_assert(); head = tx_buffer_head; if (++head >= tx_buffer_total_size_) head = 0; while (tx_buffer_tail == head) { int priority = nvic_execution_priority(); if (priority <= IRQ_PRIORITY) { if ((UART1_S1 & UART_S1_TDRE)) { uint32_t tail = tx_buffer_tail; if (++tail >= tx_buffer_total_size_) tail = 0; if (tail < SERIAL2_TX_BUFFER_SIZE) { n = tx_buffer[tail]; } else { n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE]; } if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2); UART1_D = n; tx_buffer_tail = tail; } } else if (priority >= 256) { yield(); // wait } } if (head < SERIAL2_TX_BUFFER_SIZE) { tx_buffer[head] = c; } else { tx_buffer_storage_[head - SERIAL2_TX_BUFFER_SIZE] = c; } transmitting = 1; tx_buffer_head = head; UART1_C2 = C2_TX_ACTIVE; } #ifdef HAS_KINETISK_UART1_FIFO void serial2_write(const void *buf, unsigned int count) { const uint8_t *p = (const uint8_t *)buf; const uint8_t *end = p + count; uint32_t head, n; if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return; if (transmit_pin) transmit_assert(); while (p < end) { head = tx_buffer_head; if (++head >= tx_buffer_total_size_) head = 0; if (tx_buffer_tail == head) { UART1_C2 = C2_TX_ACTIVE; do { int priority = nvic_execution_priority(); if (priority <= IRQ_PRIORITY) { if ((UART1_S1 & UART_S1_TDRE)) { uint32_t tail = tx_buffer_tail; if (++tail >= tx_buffer_total_size_) tail = 0; if (tail < SERIAL2_TX_BUFFER_SIZE) { n = tx_buffer[tail]; } else { n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE]; } if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2); UART1_D = n; tx_buffer_tail = tail; } } else if (priority >= 256) { yield(); } } while (tx_buffer_tail == head); } if (head < SERIAL2_TX_BUFFER_SIZE) { tx_buffer[head] = *p++; } else { tx_buffer_storage_[head - SERIAL2_TX_BUFFER_SIZE] = *p++; } transmitting = 1; tx_buffer_head = head; } UART1_C2 = C2_TX_ACTIVE; } #else void serial2_write(const void *buf, unsigned int count) { const uint8_t *p = (const uint8_t *)buf; while (count-- > 0) serial2_putchar(*p++); } #endif void serial2_flush(void) { while (transmitting) yield(); // wait } int serial2_write_buffer_free(void) { uint32_t head, tail; head = tx_buffer_head; tail = tx_buffer_tail; if (head >= tail) return tx_buffer_total_size_ - 1 - head + tail; return tail - head - 1; } int serial2_available(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head >= tail) return head - tail; return rx_buffer_total_size_ + head - tail; } int serial2_getchar(void) { uint32_t head, tail; int c; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= rx_buffer_total_size_) tail = 0; if (tail < SERIAL2_RX_BUFFER_SIZE) { c = rx_buffer[tail]; } else { c = rx_buffer_storage_[tail-SERIAL2_RX_BUFFER_SIZE]; } rx_buffer_tail = tail; if (rts_pin) { int avail; if (head >= tail) avail = head - tail; else avail = rx_buffer_total_size_ + head - tail; if (avail <= rts_low_watermark_) rts_assert(); } return c; } int serial2_peek(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= rx_buffer_total_size_) tail = 0; if (tail < SERIAL2_RX_BUFFER_SIZE) { return rx_buffer[tail]; } return rx_buffer_storage_[tail-SERIAL2_RX_BUFFER_SIZE]; } void serial2_clear(void) { #ifdef HAS_KINETISK_UART1_FIFO if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return; UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); UART1_CFIFO = UART_CFIFO_RXFLUSH; UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); #endif rx_buffer_head = rx_buffer_tail; if (rts_pin) rts_assert(); } // status interrupt combines // Transmit data below watermark UART_S1_TDRE // Transmit complete UART_S1_TC // Idle line UART_S1_IDLE // Receive data above watermark UART_S1_RDRF // LIN break detect UART_S2_LBKDIF // RxD pin active edge UART_S2_RXEDGIF void uart1_status_isr(void) { uint32_t head, tail, n; uint8_t c; #ifdef HAS_KINETISK_UART1_FIFO uint32_t newhead; uint8_t avail; if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) { __disable_irq(); avail = UART1_RCFIFO; if (avail == 0) { // The only way to clear the IDLE interrupt flag is // to read the data register. But reading with no // data causes a FIFO underrun, which causes the // FIFO to return corrupted data. If anyone from // Freescale reads this, what a poor design! There // write should be a write-1-to-clear for IDLE. c = UART1_D; // flushing the fifo recovers from the underrun, // but there's a possible race condition where a // new character could be received between reading // RCFIFO == 0 and flushing the FIFO. To minimize // the chance, interrupts are disabled so a higher // priority interrupt (hopefully) doesn't delay. // TODO: change this to disabling the IDLE interrupt // which won't be simple, since we already manage // which transmit interrupts are enabled. UART1_CFIFO = UART_CFIFO_RXFLUSH; __enable_irq(); } else { __enable_irq(); head = rx_buffer_head; tail = rx_buffer_tail; do { if (use9Bits && (UART1_C3 & 0x80)) { n = UART1_D | 0x100; } else { n = UART1_D; } newhead = head + 1; if (newhead >= rx_buffer_total_size_) newhead = 0; if (newhead != tail) { head = newhead; if (newhead < SERIAL2_RX_BUFFER_SIZE) { rx_buffer[head] = n; } else { rx_buffer_storage_[head-SERIAL2_RX_BUFFER_SIZE] = n; } } } while (--avail > 0); rx_buffer_head = head; if (rts_pin) { int avail; if (head >= tail) avail = head - tail; else avail = rx_buffer_total_size_ + head - tail; if (avail >= rts_high_watermark_) rts_deassert(); } } } c = UART1_C2; if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) { head = tx_buffer_head; tail = tx_buffer_tail; do { if (tail == head) break; if (++tail >= tx_buffer_total_size_) tail = 0; avail = UART1_S1; if (tail < SERIAL2_TX_BUFFER_SIZE) { n = tx_buffer[tail]; } else { n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE]; } if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2); UART1_D = n; } while (UART1_TCFIFO < 8); tx_buffer_tail = tail; if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING; } #else if (UART1_S1 & UART_S1_RDRF) { if (use9Bits && (UART1_C3 & 0x80)) { n = UART1_D | 0x100; } else { n = UART1_D; } head = rx_buffer_head + 1; if (head >= rx_buffer_total_size_) head = 0; if (head != rx_buffer_tail) { if (head < SERIAL2_RX_BUFFER_SIZE) { rx_buffer[head] = n; } else { rx_buffer_storage_[head-SERIAL2_RX_BUFFER_SIZE] = n; } rx_buffer_head = head; } } c = UART1_C2; if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) { head = tx_buffer_head; tail = tx_buffer_tail; if (head == tail) { UART1_C2 = C2_TX_COMPLETING; } else { if (++tail >= tx_buffer_total_size_) tail = 0; if (tail < SERIAL2_TX_BUFFER_SIZE) { n = tx_buffer[tail]; } else { n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE]; } if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2); UART1_D = n; tx_buffer_tail = tail; } } #endif if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) { transmitting = 0; if (transmit_pin) transmit_deassert(); UART1_C2 = C2_TX_INACTIVE; } } void serial2_add_memory_for_read(void *buffer, size_t length) { rx_buffer_storage_ = (BUFTYPE*)buffer; if (buffer) { rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE + length; } else { rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE; } rts_low_watermark_ = RTS_LOW_WATERMARK + length; rts_high_watermark_ = RTS_HIGH_WATERMARK + length; } void serial2_add_memory_for_write(void *buffer, size_t length) { tx_buffer_storage_ = (BUFTYPE*)buffer; if (buffer) { tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE + length; } else { tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE; } }