#ifndef DMAChannel_h_ #define DMAChannel_h_ #include "kinetis.h" // This code is a work-in-progress. It's incomplete and not usable yet... // // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 // known libraries with DMA usage (in need of porting to this new scheme): // // https://github.com/PaulStoffregen/Audio // https://github.com/PaulStoffregen/OctoWS2811 // https://github.com/pedvide/ADC // https://github.com/duff2013/SerialEvent // https://github.com/pixelmatix/SmartMatrix // https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme #ifdef __cplusplus #define DMACHANNEL_HAS_BEGIN #define DMACHANNEL_HAS_BOOLEAN_CTOR class DMABaseClass { public: typedef struct __attribute__((packed)) { volatile const void * volatile SADDR; int16_t SOFF; union { uint16_t ATTR; struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; }; union { uint32_t NBYTES; uint32_t NBYTES_MLNO; uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; }; int32_t SLAST; volatile void * volatile DADDR; int16_t DOFF; union { volatile uint16_t CITER; volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; }; int32_t DLASTSGA; volatile uint16_t CSR; union { volatile uint16_t BITER; volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; }; } TCD_t; TCD_t *TCD; /***************************************/ /** Data Transfer **/ /***************************************/ // Use a single variable as the data source. Typically a register // for receiving data from one of the hardware peripherals is used. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); } void source(volatile const unsigned char &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 0; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; TCD->SLAST = 0; } void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); } void source(volatile const unsigned short &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 1; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; TCD->SLAST = 0; } void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned long &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 2; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; TCD->SLAST = 0; } // Use a buffer (array of data) as the data source. Typically a // buffer for transmitting data is used. void sourceBuffer(volatile const signed char p[], unsigned int len) { sourceBuffer((volatile const uint8_t *)p, len); } void sourceBuffer(volatile const unsigned char p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 1; TCD->ATTR_SRC = 0; TCD->NBYTES = 1; TCD->SLAST = -len; TCD->BITER = len; TCD->CITER = len; } void sourceBuffer(volatile const signed short p[], unsigned int len) { sourceBuffer((volatile const uint16_t *)p, len); } void sourceBuffer(volatile const unsigned short p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 2; TCD->ATTR_SRC = 1; TCD->NBYTES = 2; TCD->SLAST = -len; TCD->BITER = len / 2; TCD->CITER = len / 2; } void sourceBuffer(volatile const signed int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const signed long p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned long p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 4; TCD->ATTR_SRC = 2; TCD->NBYTES = 4; TCD->SLAST = -len; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a circular buffer as the data source void sourceCircular(volatile const signed char p[], unsigned int len) { sourceCircular((volatile const uint8_t *)p, len); } void sourceCircular(volatile const unsigned char p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 1; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3); TCD->NBYTES = 1; TCD->SLAST = 0; TCD->BITER = len; TCD->CITER = len; } void sourceCircular(volatile const signed short p[], unsigned int len) { sourceCircular((volatile const uint16_t *)p, len); } void sourceCircular(volatile const unsigned short p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 2; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1; TCD->NBYTES = 2; TCD->SLAST = 0; TCD->BITER = len / 2; TCD->CITER = len / 2; } void sourceCircular(volatile const signed int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const signed long p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned long p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 4; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2; TCD->NBYTES = 4; TCD->SLAST = 0; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a single variable as the data destination. Typically a register // for transmitting data to one of the hardware peripherals is used. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); } void destination(volatile unsigned char &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 0; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; TCD->DLASTSGA = 0; } void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); } void destination(volatile unsigned short &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 1; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; TCD->DLASTSGA = 0; } void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned long &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 2; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; TCD->DLASTSGA = 0; } // Use a buffer (array of data) as the data destination. Typically a // buffer for receiving data is used. void destinationBuffer(volatile signed char p[], unsigned int len) { destinationBuffer((volatile uint8_t *)p, len); } void destinationBuffer(volatile unsigned char p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 1; TCD->ATTR_DST = 0; TCD->NBYTES = 1; TCD->DLASTSGA = -len; TCD->BITER = len; TCD->CITER = len; } void destinationBuffer(volatile signed short p[], unsigned int len) { destinationBuffer((volatile uint16_t *)p, len); } void destinationBuffer(volatile unsigned short p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 2; TCD->ATTR_DST = 1; TCD->NBYTES = 2; TCD->DLASTSGA = -len; TCD->BITER = len / 2; TCD->CITER = len / 2; } void destinationBuffer(volatile signed int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile signed long p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned long p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 4; TCD->ATTR_DST = 2; TCD->NBYTES = 4; TCD->DLASTSGA = -len; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a circular buffer as the data destination void destinationCircular(volatile signed char p[], unsigned int len) { destinationCircular((volatile uint8_t *)p, len); } void destinationCircular(volatile unsigned char p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 1; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3); TCD->NBYTES = 1; TCD->DLASTSGA = 0; TCD->BITER = len; TCD->CITER = len; } void destinationCircular(volatile signed short p[], unsigned int len) { destinationCircular((volatile uint16_t *)p, len); } void destinationCircular(volatile unsigned short p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 2; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1; TCD->NBYTES = 2; TCD->DLASTSGA = 0; TCD->BITER = len / 2; TCD->CITER = len / 2; } void destinationCircular(volatile signed int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile signed long p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned long p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 4; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2; TCD->NBYTES = 4; TCD->DLASTSGA = 0; TCD->BITER = len / 4; TCD->CITER = len / 4; } /*************************************************/ /** Quantity of Data to Transfer **/ /*************************************************/ // Set the data size used for each triggered transfer void transferSize(unsigned int len) { if (len == 4) { TCD->NBYTES = 4; if (TCD->SOFF != 0) TCD->SOFF = 4; if (TCD->DOFF != 0) TCD->DOFF = 4; TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202; } else if (len == 2) { TCD->NBYTES = 2; if (TCD->SOFF != 0) TCD->SOFF = 2; if (TCD->DOFF != 0) TCD->DOFF = 2; TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101; } else { TCD->NBYTES = 1; if (TCD->SOFF != 0) TCD->SOFF = 1; if (TCD->DOFF != 0) TCD->DOFF = 1; TCD->ATTR = TCD->ATTR & 0xF8F8; } } // Set the number of transfers (number of triggers until complete) void transferCount(unsigned int len) { if (len > 32767) return; if (len >= 512) { TCD->BITER = len; TCD->CITER = len; } else { TCD->BITER = (TCD->BITER & 0xFE00) | len; TCD->CITER = (TCD->CITER & 0xFE00) | len; } } /*************************************************/ /** Special Options / Features **/ /*************************************************/ void interruptAtCompletion(void) { TCD->CSR |= DMA_TCD_CSR_INTMAJOR; } void interruptAtHalf(void) { TCD->CSR |= DMA_TCD_CSR_INTHALF; } void disableOnCompletion(void) { TCD->CSR |= DMA_TCD_CSR_DREQ; } void replaceSettingsOnCompletion(const DMABaseClass &settings) { TCD->DLASTSGA = (int32_t)(settings.TCD); TCD->CSR &= ~DMA_TCD_CSR_DONE; TCD->CSR |= DMA_TCD_CSR_ESG; } protected: // users should not be able to create instances of DMABaseClass, which // require the inheriting class to initialize the TCD pointer. DMABaseClass() {} static inline void copy_tcd(TCD_t *dst, const TCD_t *src) { const uint32_t *p = (const uint32_t *)src; uint32_t *q = (uint32_t *)dst; uint32_t t1, t2, t3, t4; t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; } }; // DMASetting represents settings stored only in memory, which can be // applied to any DMA channel. class DMASetting : public DMABaseClass { public: DMASetting() { TCD = &tcddata; } DMASetting(const DMASetting &c) { TCD = &tcddata; *this = c; } DMASetting(const DMABaseClass &c) { TCD = &tcddata; *this = c; } DMASetting & operator = (const DMABaseClass &rhs) { copy_tcd(TCD, rhs.TCD); return *this; } private: TCD_t tcddata __attribute__((aligned(32))); }; // DMAChannel reprents an actual DMA channel and its current settings class DMAChannel : public DMABaseClass { public: /*************************************************/ /** Channel Allocation **/ /*************************************************/ DMAChannel() { begin(); } DMAChannel(const DMAChannel &c) { TCD = c.TCD; channel = c.channel; } DMAChannel(const DMASetting &c) { begin(); copy_tcd(TCD, c.TCD); } DMAChannel(bool allocate) { if (allocate) begin(); } DMAChannel & operator = (const DMAChannel &rhs) { if (channel != rhs.channel) { release(); TCD = rhs.TCD; channel = rhs.channel; } return *this; } DMAChannel & operator = (const DMASetting &rhs) { copy_tcd(TCD, rhs.TCD); return *this; } ~DMAChannel() { release(); } void begin(bool force_initialization = false); private: void release(void); public: /***************************************/ /** Triggering **/ /***************************************/ // Triggers cause the DMA channel to actually move data. Each // trigger moves a single data unit, which is typically 8, 16 or // 32 bits. If a channel is configured for 200 transfers // Use a hardware trigger to make the DMA channel run void triggerAtHardwareEvent(uint8_t source) { volatile uint8_t *mux; mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel; *mux = 0; *mux = (source & 63) | DMAMUX_ENABLE; } // Use another DMA channel as the trigger, causing this // channel to trigger after each transfer is makes, except // the its last transfer. This effectively makes the 2 // channels run in parallel until the last transfer void triggerAtTransfersOf(DMABaseClass &ch) { ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK) | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK; ch.TCD->CITER = ch.TCD->BITER ; } // Use another DMA channel as the trigger, causing this // channel to trigger when the other channel completes. void triggerAtCompletionOf(DMABaseClass &ch) { ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE)) | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK; } // Cause this DMA channel to be continuously triggered, so // it will move data as rapidly as possible, without waiting. // Normally this would be used with disableOnCompletion(). void triggerContinuously(void) { volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0; mux[channel] = 0; #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel; #else // search for an unused "always on" source unsigned int i = DMAMUX_SOURCE_ALWAYS0; for (i = DMAMUX_SOURCE_ALWAYS0; i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) { unsigned int ch; for (ch=0; ch < DMA_NUM_CHANNELS; ch++) { if (mux[ch] == i) break; } if (ch >= DMA_NUM_CHANNELS) { mux[channel] = (i | DMAMUX_ENABLE); return; } } #endif } // Manually trigger the DMA channel. void triggerManual(void) { DMA_SSRT = channel; } /***************************************/ /** Interrupts **/ /***************************************/ // An interrupt routine can be run when the DMA channel completes // the entire transfer, and also optionally when half of the // transfer is completed. void attachInterrupt(void (*isr)(void)) { _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); } void detachInterrupt(void) { NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel); } void clearInterrupt(void) { DMA_CINT = channel; } /***************************************/ /** Enable / Disable **/ /***************************************/ void enable(void) { DMA_SERQ = channel; } void disable(void) { DMA_CERQ = channel; } /***************************************/ /** Status **/ /***************************************/ bool complete(void) { if (TCD->CSR & DMA_TCD_CSR_DONE) return true; return false; } void clearComplete(void) { DMA_CDNE = channel; } bool error(void) { if (DMA_ERR & (1<<channel)) return true; return false; } void clearError(void) { DMA_CERR = channel; } void * sourceAddress(void) { return (void *)(TCD->SADDR); } void * destinationAddress(void) { return (void *)(TCD->DADDR); } /***************************************/ /** Direct Hardware Access **/ /***************************************/ // For complex and unusual configurations not possible with the above // functions, the Transfer Control Descriptor (TCD) and channel number // can be used directly. This leads to less portable and less readable // code, but direct control of all parameters is possible. uint8_t channel; // TCD is accessible due to inheritance from DMABaseClass /* usage cases: ************************ OctoWS2811: ************************ // enable clocks to the DMA controller and DMAMUX SIM_SCGC7 |= SIM_SCGC7_DMA; SIM_SCGC6 |= SIM_SCGC6_DMAMUX; DMA_CR = 0; DMA_CERQ = 1; DMA_CERQ = 2; DMA_CERQ = 3; // DMA channel #1 sets WS2811 high at the beginning of each cycle DMA_TCD1_SADDR = &ones; DMA_TCD1_SOFF = 0; DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); DMA_TCD1_NBYTES_MLNO = 1; DMA_TCD1_SLAST = 0; DMA_TCD1_DADDR = &GPIOD_PSOR; DMA_TCD1_DOFF = 0; DMA_TCD1_CITER_ELINKNO = bufsize; DMA_TCD1_DLASTSGA = 0; DMA_TCD1_CSR = DMA_TCD_CSR_DREQ; DMA_TCD1_BITER_ELINKNO = bufsize; dma1.source(ones); dma1.destination(GPIOD_PSOR); dma1.size(1); dma1.count(bufsize); dma1.disableOnCompletion(); // DMA channel #2 writes the pixel data at 20% of the cycle DMA_TCD2_SADDR = frameBuffer; DMA_TCD2_SOFF = 1; DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); DMA_TCD2_NBYTES_MLNO = 1; DMA_TCD2_SLAST = -bufsize; DMA_TCD2_DADDR = &GPIOD_PDOR; DMA_TCD2_DOFF = 0; DMA_TCD2_CITER_ELINKNO = bufsize; DMA_TCD2_DLASTSGA = 0; DMA_TCD2_CSR = DMA_TCD_CSR_DREQ; DMA_TCD2_BITER_ELINKNO = bufsize; dma2.source(frameBuffer, sizeof(frameBuffer)); dma2.destination(GPIOD_PDOR); dma2.size(1); dma2.count(bufsize); dma2.disableOnCompletion(); // DMA channel #3 clear all the pins low at 48% of the cycle DMA_TCD3_SADDR = &ones; DMA_TCD3_SOFF = 0; DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); DMA_TCD3_NBYTES_MLNO = 1; DMA_TCD3_SLAST = 0; DMA_TCD3_DADDR = &GPIOD_PCOR; DMA_TCD3_DOFF = 0; DMA_TCD3_CITER_ELINKNO = bufsize; DMA_TCD3_DLASTSGA = 0; DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR; DMA_TCD3_BITER_ELINKNO = bufsize; dma3.source(ones); dma3.destination(GPIOD_PCOR); dma3.size(1); dma3.count(bufsize); dma3.disableOnCompletion(); ************************ Audio, DAC ************************ DMA_CR = 0; DMA_TCD4_SADDR = dac_buffer; DMA_TCD4_SOFF = 2; DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); DMA_TCD4_NBYTES_MLNO = 2; DMA_TCD4_SLAST = -sizeof(dac_buffer); DMA_TCD4_DADDR = &DAC0_DAT0L; DMA_TCD4_DOFF = 0; DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2; DMA_TCD4_DLASTSGA = 0; DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2; DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; DMAMUX0_CHCFG4 = DMAMUX_DISABLE; DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE; ************************ Audio, I2S ************************ DMA_CR = 0; DMA_TCD0_SADDR = i2s_tx_buffer; DMA_TCD0_SOFF = 2; DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); DMA_TCD0_NBYTES_MLNO = 2; DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer); DMA_TCD0_DADDR = &I2S0_TDR0; DMA_TCD0_DOFF = 0; DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; DMA_TCD0_DLASTSGA = 0; DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; DMAMUX0_CHCFG0 = DMAMUX_DISABLE; DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE; ************************ ADC lib, Pedro Villanueva ************************ DMA_CR = 0; // normal mode of operation *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) | DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) | DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop) *DMA_TCD_SADDR = ADC_RA; // source address *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes *DMA_TCD_SLAST = 0; // don't change src address after major loop completes *DMA_TCD_DADDR = elems; // destination address *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request DMA_CINT = DMA_channel; // clear interrupts uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0; if(ADC_number==1){ DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1; } *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0 DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts ************************ SmartMatrix ************************ // enable minor loop mapping so addresses can get reset after minor loops DMA_CR = 1 << 7; // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2) // only use single major loop, never disable channel #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2 DMA_TCD0_SADDR = &gpiosync.gpio_pcor; DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE | ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) | (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor)); // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset) DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER; // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER; DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); // single major loop DMA_TCD0_CITER_ELINKNO = 1; DMA_TCD0_BITER_ELINKNO = 1; // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete DMA_TCD0_CSR = (1 << 8) | (1 << 5); DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE; // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle // only use single major loop, never disable channel DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues; DMA_TCD1_SOFF = sizeof(uint16_t); DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); // 16-bit = 2 bytes transferred // transfer two 16-bit values, reset destination address back after each minor loop DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset) DMA_TCD1_DADDR = &gpiosync.gpio_pcor; DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor)); // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete DMA_TCD1_CITER_ELINKNO = 1; DMA_TCD1_BITER_ELINKNO = 1; DMA_TCD1_CSR = 0; // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block // only use single major loop, never disable channel // link to channel 3 when complete #define TIMER_REGISTERS_TO_UPDATE 2 DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe; DMA_TCD2_SOFF = sizeof(uint16_t); DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t)); DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); // 16-bit = 2 bytes transferred DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t); DMA_TCD2_DADDR = &FTM1_C1V; DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V; DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD); // no minor loop linking, single major loop DMA_TCD2_CITER_ELINKNO = 1; DMA_TCD2_BITER_ELINKNO = 1; // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete DMA_TCD2_CSR = (3 << 8) | (1 << 5); DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE; #define DMA_TCD_MLOFF_MASK (0x3FFFFC00) // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete DMA_TCD3_SADDR = matrixUpdateData[0][0]; DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2; // SADDR will get updated by ISR, no need to set SLAST DMA_TCD3_SLAST = 0; DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); // after each minor loop, set source to point back to the beginning of this set of data, // but advance by 1 byte to get the next significant bits data DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) | (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK); DMA_TCD3_DADDR = &GPIOD_PDOR; DMA_TCD3_DOFF = 0; DMA_TCD3_DLASTSGA = 0; DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW; DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW; // int after major loop is complete DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR; // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer) //DMA_TCD3_CSR |= (0x02 << 14); // enable a done interrupt when all DMA operations are complete NVIC_ENABLE_IRQ(IRQ_DMA_CH3); // enable additional dma interrupt used as software interrupt NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority NVIC_ENABLE_IRQ(IRQ_DMA_CH1); // enable channels 0, 1, 2, 3 DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); // at the end after everything is set up: enable timer from system clock, with appropriate prescale FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE); */ }; // arrange the relative priority of 2 or more DMA channels void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4); extern "C" { #endif extern uint16_t dma_channel_allocated_mask; #ifdef __cplusplus } #endif #endif