/* USB Serial Example for Teensy USB Development Board * http://www.pjrc.com/teensy/usb_serial.html * Copyright (c) 2008 PJRC.COM, LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "usb_common.h" #include "usb_private.h" #include "pauls_ugly_debug.h" /************************************************************************** * * Endpoint Buffer Configuration * **************************************************************************/ static const uint8_t PROGMEM endpoint_config_table[] = { 1, EP_TYPE_INTERRUPT_IN, EP_SIZE(DEBUG_TX_SIZE) | DEBUG_TX_BUFFER, 1, EP_TYPE_INTERRUPT_OUT, EP_SIZE(DEBUG_RX_SIZE) | DEBUG_RX_BUFFER, 1, EP_TYPE_BULK_OUT, EP_SIZE(DISK_RX_SIZE) | DISK_RX_BUFFER, 1, EP_TYPE_BULK_IN, EP_SIZE(DISK_TX_SIZE) | DISK_TX_BUFFER, 1, EP_TYPE_INTERRUPT_IN, EP_SIZE(KEYBOARD_SIZE) | KEYBOARD_BUFFER, 0 }; /************************************************************************** * * Descriptor Data * **************************************************************************/ // Descriptors are the data that your computer reads when it auto-detects // this USB device (called "enumeration" in USB lingo). The most commonly // changed items are editable at the top of this file. Changing things // in here should only be done by those who've read chapter 9 of the USB // spec and relevant portions of any USB class specifications! static const uint8_t PROGMEM device_descriptor[] = { 18, // bLength 1, // bDescriptorType 0x00, 0x02, // bcdUSB 0, // bDeviceClass 0, // bDeviceSubClass 0, // bDeviceProtocol ENDPOINT0_SIZE, // bMaxPacketSize0 LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct 0x00, 0x01, // bcdDevice 0, // iManufacturer 1, // iProduct 2, // iSerialNumber 1 // bNumConfigurations }; // Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60 static const uint8_t PROGMEM keyboard_hid_report_desc[] = { 0x05, 0x01, // Usage Page (Generic Desktop), 0x09, 0x06, // Usage (Keyboard), 0xA1, 0x01, // Collection (Application), 0x75, 0x01, // Report Size (1), 0x95, 0x08, // Report Count (8), 0x05, 0x07, // Usage Page (Key Codes), 0x19, 0xE0, // Usage Minimum (224), 0x29, 0xE7, // Usage Maximum (231), 0x15, 0x00, // Logical Minimum (0), 0x25, 0x01, // Logical Maximum (1), 0x81, 0x02, // Input (Data, Variable, Absolute), ;Modifier byte 0x95, 0x01, // Report Count (1), 0x75, 0x08, // Report Size (8), 0x81, 0x03, // Input (Constant), ;Reserved byte 0x95, 0x05, // Report Count (5), 0x75, 0x01, // Report Size (1), 0x05, 0x08, // Usage Page (LEDs), 0x19, 0x01, // Usage Minimum (1), 0x29, 0x05, // Usage Maximum (5), 0x91, 0x02, // Output (Data, Variable, Absolute), ;LED report 0x95, 0x01, // Report Count (1), 0x75, 0x03, // Report Size (3), 0x91, 0x03, // Output (Constant), ;LED report padding 0x95, 0x06, // Report Count (6), 0x75, 0x08, // Report Size (8), 0x15, 0x00, // Logical Minimum (0), 0x25, 0x7F, // Logical Maximum(104), 0x05, 0x07, // Usage Page (Key Codes), 0x19, 0x00, // Usage Minimum (0), 0x29, 0x7F, // Usage Maximum (104), 0x81, 0x00, // Input (Data, Array), 0xc0 // End Collection }; static const uint8_t PROGMEM debug_hid_report_desc[] = { 0x06, 0xC9, 0xFF, // Usage Page 0xFFC9 (vendor defined) 0x09, 0x04, // Usage 0x04 0xA1, 0x5C, // Collection 0x5C 0x75, 0x08, // report size = 8 bits (global) 0x15, 0x00, // logical minimum = 0 (global) 0x26, 0xFF, 0x00, // logical maximum = 255 (global) 0x95, DEBUG_TX_SIZE, // report count (global) 0x09, 0x75, // usage (local) 0x81, 0x02, // Input 0x95, DEBUG_RX_SIZE, // report count (global) 0x09, 0x76, // usage (local) 0x91, 0x02, // Output 0x95, 0x04, // report count (global) 0x09, 0x76, // usage (local) 0xB1, 0x02, // Feature 0xC0 // end collection }; #define CONFIG1_DESC_SIZE ( 9 + 9+7+7 + 9+9+7 + 9+9+7+7 ) #define KEYBOARD_HID_DESC_OFFSET ( 9 + 9+7+7 + 9 ) #define DEBUG_HID_DESC_OFFSET ( 9 + 9+7+7 + 9+9+7 + 9 ) static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = { // configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10 9, // bLength; 2, // bDescriptorType; LSB(CONFIG1_DESC_SIZE), // wTotalLength MSB(CONFIG1_DESC_SIZE), NUM_INTERFACE, // bNumInterfaces 1, // bConfigurationValue 0, // iConfiguration 0xC0, // bmAttributes 50, // bMaxPower // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 9, // bLength 4, // bDescriptorType DISK_INTERFACE, // bInterfaceNumber 0, // bAlternateSetting 2, // bNumEndpoints 0x08, // bInterfaceClass (8 = Mass Storage) 0x06, // bInterfaceSubClass (6 = SCSI transparent) 0x50, // bInterfaceProtocol (0x50 = bulk only transport) 0, // iInterface // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType DISK_RX_ENDPOINT, // bEndpointAddress 0x02, // bmAttributes (0x02=bulk) DISK_RX_SIZE, 0, // wMaxPacketSize 0, // bInterval // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType DISK_TX_ENDPOINT | 0x80, // bEndpointAddress 0x02, // bmAttributes (0x02=bulk) DISK_TX_SIZE, 0, // wMaxPacketSize 0, // bInterval // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 9, // bLength 4, // bDescriptorType KEYBOARD_INTERFACE, // bInterfaceNumber 0, // bAlternateSetting 1, // bNumEndpoints 0x03, // bInterfaceClass (0x03 = HID) 0x01, // bInterfaceSubClass (0x01 = Boot) 0x01, // bInterfaceProtocol (0x01 = Keyboard) 0, // iInterface // HID interface descriptor, HID 1.11 spec, section 6.2.1 9, // bLength 0x21, // bDescriptorType 0x11, 0x01, // bcdHID 0, // bCountryCode 1, // bNumDescriptors 0x22, // bDescriptorType sizeof(keyboard_hid_report_desc), // wDescriptorLength 0, // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress 0x03, // bmAttributes (0x03=intr) KEYBOARD_SIZE, 0, // wMaxPacketSize KEYBOARD_INTERVAL, // bInterval // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 9, // bLength 4, // bDescriptorType DEBUG_INTERFACE, // bInterfaceNumber 0, // bAlternateSetting 2, // bNumEndpoints 0x03, // bInterfaceClass (0x03 = HID) 0x00, // bInterfaceSubClass 0x00, // bInterfaceProtocol 0, // iInterface // HID interface descriptor, HID 1.11 spec, section 6.2.1 9, // bLength 0x21, // bDescriptorType 0x11, 0x01, // bcdHID 0, // bCountryCode 1, // bNumDescriptors 0x22, // bDescriptorType sizeof(debug_hid_report_desc), // wDescriptorLength 0, // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType DEBUG_TX_ENDPOINT | 0x80, // bEndpointAddress 0x03, // bmAttributes (0x03=intr) DEBUG_TX_SIZE, 0, // wMaxPacketSize DEBUG_TX_INTERVAL, // bInterval // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType DEBUG_RX_ENDPOINT, // bEndpointAddress 0x03, // bmAttributes (0x03=intr) DEBUG_RX_SIZE, 0, // wMaxPacketSize DEBUG_RX_INTERVAL, // bInterval }; // If you're desperate for a little extra code memory, these strings // can be completely removed if iManufacturer, iProduct, iSerialNumber // in the device desciptor are changed to zeros. struct usb_string_descriptor_struct { uint8_t bLength; uint8_t bDescriptorType; int16_t wString[]; }; static const struct usb_string_descriptor_struct PROGMEM string0 = { 4, 3, {0x0409} }; static const struct usb_string_descriptor_struct PROGMEM string1 = { sizeof(STR_PRODUCT), 3, STR_PRODUCT }; static const struct usb_string_descriptor_struct PROGMEM string2 = { sizeof(STR_SERIAL_NUMBER), 3, STR_SERIAL_NUMBER }; // This table defines which descriptor data is sent for each specific // request from the host (in wValue and wIndex). static const struct descriptor_list_struct { uint16_t wValue; uint16_t wIndex; const uint8_t *addr; uint8_t length; } PROGMEM descriptor_list[] = { {0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)}, {0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)}, {0x2200, KEYBOARD_INTERFACE, keyboard_hid_report_desc, sizeof(keyboard_hid_report_desc)}, {0x2100, KEYBOARD_INTERFACE, config1_descriptor+KEYBOARD_HID_DESC_OFFSET, 9}, {0x2200, DEBUG_INTERFACE, debug_hid_report_desc, sizeof(debug_hid_report_desc)}, {0x2100, DEBUG_INTERFACE, config1_descriptor+DEBUG_HID_DESC_OFFSET, 9}, {0x0300, 0x0000, (const uint8_t *)&string0, 4}, {0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_PRODUCT)}, {0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_SERIAL_NUMBER)}, }; #define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct)) static const uint8_t PROGMEM scsi_inquiry_response[] = { 0x00, // 0x00 = direct-access device 0x80, // 0x80 = removable media 0x04, // 0x04 = SPC-2 commands 0x02, // response format 0x20, // # bytes past this point 0x00, 0x00, 0x00, 'G','e','n','e','r','i','c',' ', 'U','S','B',' ','F','l','a','s','h',' ','D','i','s','c',' ',' ', '1','.','0','0' }; /************************************************************************** * * Variables - these are the only non-stack RAM usage * **************************************************************************/ // zero when we are not configured, non-zero when enumerated volatile uint8_t usb_configuration USBSTATE; volatile uint8_t usb_suspended USBSTATE; // the time remaining before we transmit any partially full // packet, or send a zero length packet. volatile uint8_t debug_flush_timer USBSTATE; // byte0: which modifier keys are currently pressed // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui // byte1: media keys (TODO: document these) // bytes2-7: which keys are currently pressed, up to 6 keys may be down at once uint8_t keyboard_report_data[8] USBSTATE; // protocol setting from the host. We use exactly the same report // either way, so this variable only stores the setting since we // are required to be able to report which setting is in use. static uint8_t keyboard_protocol USBSTATE; // the idle configuration, how often we send the report to the // host (ms * 4) even when it hasn't changed static uint8_t keyboard_idle_config USBSTATE; // count until idle timeout uint8_t keyboard_idle_count USBSTATE; // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana volatile uint8_t keyboard_leds USBSTATE; static volatile uint8_t ms_state USBSTATE; static volatile uint8_t ms_rdonly USBSTATE; static volatile uint8_t media_lock_state USBSTATE; #define MEDIA_LOCKED_BY_USER 1 // user locked media #define MEDIA_LOCKED_BY_ISR 2 // isr locked media #define MEDIA_ISR_LOCK_PENDING 4 // isr request while user locked /************************************************************************** * * Public Functions - these are the API intended for the user * **************************************************************************/ void media_init(void); void media_restart(void); // initialize USB serial void usb_init(void) { uint8_t u; u = USBCON; if ((u & (1<<USBE)) && !(u & (1<<FRZCLK))) { media_restart(); return; } HW_CONFIG(); USB_FREEZE(); // enable USB PLL_CONFIG(); // config PLL while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock USB_CONFIG(); // start USB clock UDCON = 0; // enable attach resistor usb_configuration = 0; usb_suspended = 0; debug_flush_timer = 0; keyboard_report_data[0] = 0; keyboard_report_data[1] = 0; keyboard_report_data[2] = 0; keyboard_report_data[3] = 0; keyboard_report_data[4] = 0; keyboard_report_data[5] = 0; keyboard_report_data[6] = 0; keyboard_report_data[7] = 0; keyboard_protocol = 1; keyboard_idle_config = 125; keyboard_idle_count = 0; keyboard_leds = 0; ms_state = MS_STATE_IDLE; media_lock_state = 0; UDINT = 0; UDIEN = (1<<EORSTE)|(1<<SOFE); //sei(); // init() in wiring.c does this media_init(); } void usb_shutdown(void) { UDIEN = 0; // disable interrupts UDCON = 1; // disconnect attach resistor USBCON = 0; // shut off USB periperal PLLCSR = 0; // shut off PLL usb_configuration = 0; usb_suspended = 1; } // Public API functions moved to usb_api.cpp /************************************************************************** * * Storage Media Access Functions * **************************************************************************/ #if defined(USB_DISK_SDFLASH) #include "media_sdcard.c" #elif defined(USB_DISK) #include "media_internal.c" #else #error "No known media type specified\n" #endif // User program wants to use the media, which is simple // if it's available, set the lock, otherwise report // busy and the user will just have to try again later // uint8_t media_lock(void) { uint8_t intr_state; intr_state = SREG; cli(); if (media_lock_state) { SREG = intr_state; return 0; } media_lock_state = 1; SREG = intr_state; print("User program locked media\n"); return 1; } // User is done with the media. If the ISR requested // media while it was locked by the user, then interrupts // need to be reenabled so the ISR can do its work. // void media_unlock(void) { uint8_t lock, intr_state; intr_state = SREG; cli(); lock = media_lock_state; if (lock & MEDIA_ISR_LOCK_PENDING) { UENUM = DISK_RX_ENDPOINT; UEIENX = (1<<RXOUTE); } media_lock_state = 0; SREG = intr_state; print("User program unlocking media\n"); } // Interrupt (PC access) wants to lock the media. // static inline uint8_t media_lock_isr(void) { uint8_t lock, intr_state; // epnum; intr_state = SREG; cli(); lock = media_lock_state; if (lock & MEDIA_LOCKED_BY_USER) { lock |= MEDIA_ISR_LOCK_PENDING; media_lock_state = lock; SREG = intr_state; print("ISR tried to lock, but must wait\n"); return 0; } lock |= MEDIA_LOCKED_BY_ISR; media_lock_state = lock; SREG = intr_state; return 1; } // Interrupt is finished with the media. // static inline void media_unlock_isr(void) { media_lock_state = 0; // 1 byte write is atomic } /************************************************************************** * * Private Functions - not intended for general user consumption.... * **************************************************************************/ #define ENABLE_MORE_RX 1 #define ENABLE_MORE_TX 2 static inline uint8_t mass_storage_isr(uint8_t need_rx, uint8_t need_tx) __attribute__((always_inline)); static inline uint8_t mass_storage_isr(uint8_t need_rx, uint8_t need_tx) { uint8_t n, state; const uint8_t *p; static uint32_t tag, xfer_len, lba; static uint8_t dir __attribute__ ((used)); static uint8_t cmd_len __attribute__ ((used)); static uint8_t status; static uint8_t scsi_sense, scsi_asense; static uint16_t sector_count; static uint8_t sector_chunk; static uint8_t previous_media_state, do_media_status; uint8_t cmd; if (need_rx) { UENUM = DISK_RX_ENDPOINT; if (!media_lock_isr()) { print("Media is locked, ISR exit\n"); // if the user program is busy with the media // then disable our interrupt and hope the user // program enables it again when finished. //UEIENX = 0; return 0; } //print("rx "); n = UEBCLX; state = ms_state; if (state == MS_STATE_IDLE) { print("CBW "); //phex(n); if (n != 31) goto error_stall; if (UEDATX != 0x55) goto error_stall; if (UEDATX != 0x53) goto error_stall; if (UEDATX != 0x42) goto error_stall; if (UEDATX != 0x43) goto error_stall; read_dword_lsbfirst(tag, UEDATX); read_dword_lsbfirst(xfer_len, UEDATX); dir = UEDATX & 0x80; UEDATX; // LUN cmd_len = UEDATX; //print(", len="); //phex(cmd_len); status = 0; cmd = UEDATX; print(", cmd="); phex(cmd); //print(", dir="); //phex(dir); //print(", xfer="); //phex32(xfer_len); print("\n"); do_media_status = 0; if (cmd == SCSI_CMD_REQUEST_SENSE) { // 0x03 print("REQUEST_SENSE "); phex(scsi_sense); phex(scsi_asense); print("\n"); if (media_state & MEDIA_STATE_CLAIMED) media_state |= MEDIA_STATE_CLAIMED_SENSE; UEINTX = 0x6B; UENUM = DISK_TX_ENDPOINT; UEDATX = 0x70; UEDATX = 0; UEDATX = scsi_sense; UEDATX = 0; UEDATX = 0; UEDATX = 0; UEDATX = 0; UEDATX = 10; UEDATX = 0; UEDATX = 0; UEDATX = 0; UEDATX = 0; UEDATX = scsi_asense; xfer_len -= 13; goto send_finishup; } scsi_sense = SCSI_SENSE_OK; scsi_asense = SCSI_ASENSE_NONE; if (cmd == SCSI_CMD_INQUIRY) { // 0x12 // http://en.wikipedia.org/wiki/SCSI_Inquiry_Command uint16_t len; UEDATX; // ignore request bits UEDATX; read_word_msbfirst(len, UEDATX); print("INQUIRY\n"); UEINTX = 0x6B; if (len > sizeof(scsi_inquiry_response)) len = sizeof(scsi_inquiry_response); p = scsi_inquiry_response; UENUM = DISK_TX_ENDPOINT; for (n=len; n > 0; n--) { pgm_read_byte_postinc(UEDATX, p); } xfer_len -= len; goto send_finishup; } previous_media_state = media_state; do_media_status = 1; // all commands below this point need media access if (cmd == SCSI_CMD_TEST_UNIT_READY) { // 0x00 print("TEST READY, ms="); phex(media_state); print("\n"); media_poll(); UEINTX = 0x3A; goto send_status; } // all commands below this point need the media // to be present if (!(previous_media_state & MEDIA_PRESENT_MASK)) { print("stall_in\n"); UEINTX = 0x6B; UENUM = DISK_TX_ENDPOINT; //UEIENX = 0; UECONX = (1<<STALLRQ) | (1<<EPEN); ms_state = MS_STATE_SEND_STATUS; return ENABLE_MORE_RX; } if (cmd == SCSI_CMD_MODE_SENSE_6 // 0x1A || cmd == SCSI_CMD_MODE_SENSE_10) { // 0x5A // 1A 00 1C 00 C0 00 - from disk.sys // 1A 00 3F 00 C0 00 - from classpnp.sys // 1A 00 3F 00 C0 00 - from linux kernel print("MODE SENSE 6 or 10\n"); // check allocation length... UEINTX = 0x6B; UENUM = DISK_TX_ENDPOINT; UEDATX = 0x03; UEDATX = 0x00; UEDATX = media_rdonly ? 0x80 : 0x00; // WP bit UEDATX = 0x00; xfer_len -= 4; goto send_finishup; } else if (cmd == SCSI_CMD_READ_CAPACITY) { // 0x25 uint32_t capacity; print("CAPACITY\n"); UEINTX = 0x6B; media_poll(); capacity = media_size(); UENUM = DISK_TX_ENDPOINT; write_dword_msbfirst(capacity - 1, UEDATX); UEDATX = 0x00; UEDATX = 0x00; UEDATX = 0x02; UEDATX = 0x00; xfer_len -= 8; goto send_finishup; } else if (cmd == SCSI_CMD_READ_FORMAT_CAPACITIES) { // 0x23 uint32_t capacity; print("READ_FORMAT_CAPACITIES\n"); UEINTX = 0x6B; media_poll(); capacity = media_size(); UENUM = DISK_TX_ENDPOINT; UEDATX = 0x00; UEDATX = 0x00; UEDATX = 0x00; UEDATX = 0x08; write_dword_msbfirst(capacity, UEDATX); UEDATX = 2 + status; // 2 = formatted, 3 = no media present UEDATX = 0x00; UEDATX = 0x02; // 512 byte blocks UEDATX = 0x00; xfer_len -= 12; goto send_finishup; } else if (cmd == SCSI_CMD_READ_10) { // 0x28 // http://en.wikipedia.org/wiki/SCSI_Read_Commands#Read_.2810.29 UEDATX; read_dword_msbfirst(lba, UEDATX); UEDATX; read_word_msbfirst(sector_count, UEDATX); print("READ_10: lba="); phex32(lba); print(", count="); phex16(sector_count); print("\n"); UEINTX = 0x6B; if (!(media_state & MEDIA_PRESENT_MASK)) { UENUM = DISK_TX_ENDPOINT; goto send_finishup; } media_send_begin(lba); sector_chunk = 0; ms_state = MS_STATE_SEND_DATA; goto send_data; } else if (cmd == SCSI_CMD_WRITE_10) { // 0x2A UEDATX; read_dword_msbfirst(lba, UEDATX); UEDATX; read_word_msbfirst(sector_count, UEDATX); print("WRITE_10: lba="); phex32(lba); print(", count="); phex16(sector_count); print("\n"); UEINTX = 0x6B; // TODO: how to handle write when media not ready //if (!(media_state & MEDIA_PRESENT_MASK)) goto send_finishup; sector_chunk = 0; media_receive_begin(lba); ms_state = MS_STATE_RECEIVE_DATA; n = UEBCLX; if (n > 0) goto receive_data; return ENABLE_MORE_RX; } else { print("Unimplemented, cmd="); phex(cmd); print("\n"); UEINTX = 0x6B; scsi_sense = SCSI_SENSE_ILLEGAL_REQUEST; scsi_asense = SCSI_ASENSE_INVALID_COMMAND; status = 1; goto send_finishup; //TODO: what is the proper way to handle this error?? //UENUM = DISK_TX_ENDPOINT; //UECONX = (1<<STALLRQ) | (1<<EPEN); //state = MS_STATE_SEND_STATUS; //UEIENX = (1<<TXINE); //return ENABLE_MORE_RX; } } else if (state == MS_STATE_RECEIVE_DATA) { receive_data: //print("receive, count="); //phex16(sector_count); //print (", lba="); //phex32(lba); //print(", chunk="); //phex(sector_chunk); //print("\n"); if (sector_count > 0) { media_receive_chunk(lba, sector_chunk); xfer_len -= 64; if (++sector_chunk >= 8) { sector_chunk = 0; lba++; //if (--sector_count == 0) ms_state = MS_STATE_SEND_STATUS; if (--sector_count == 0) { media_receive_end(); goto send_status; } } // if another interrupt already ending, do it now //if (UEINTX & (1<<RXOUTI)) goto receive_data; } else { UEINTX = 0x6B; } return ENABLE_MORE_RX; } else { //print("unexpected receive: n="); //phex(n); //print("\n"); UEINTX = 0x6B; return ENABLE_MORE_RX; } } if (need_tx) { UENUM = DISK_TX_ENDPOINT; //print("tx "); state = ms_state; if (state == MS_STATE_SEND_STATUS) goto send_status_force; if (state == MS_STATE_SEND_ZEROPAD) goto send_finishup; if (state == MS_STATE_SEND_DATA) goto send_data; print("unhandled tx interrupt "); phex(state); print("\n"); return 0; } return ENABLE_MORE_RX; // should never be called with both need_rx = 0 and need_tx = 0 send_data: //print("send, count="); //phex16(sector_count); //print (", lba="); //phex32(lba); //print(", chunk="); //phex(sector_chunk); //print("\n"); UENUM = DISK_TX_ENDPOINT; if (sector_count > 0 && (UEINTX & (1<<RWAL))) { media_send_chunk(lba, sector_chunk); xfer_len -= 64; if (++sector_chunk >= 8) { sector_chunk = 0; lba++; if (--sector_count == 0) { media_send_end(); ms_state = MS_STATE_SEND_STATUS; } } // if more buffers ready, don't wait for another interrupt if (UEINTX & (1<<RWAL)) goto send_data; } //UEIENX = (1<<TXINE); return ENABLE_MORE_TX; send_finishup: while (xfer_len > 0 && (UEINTX & (1<<RWAL))) { UEDATX = 0; xfer_len--; } UEINTX = 0x3A; if (xfer_len) { print("short reply\n"); ms_state = MS_STATE_SEND_ZEROPAD; //UEIENX = (1<<TXINE); return ENABLE_MORE_TX; } send_status: UENUM = DISK_TX_ENDPOINT; if (!(UEINTX & (1<<RWAL))) { print("wait tx\n"); ms_state = MS_STATE_SEND_STATUS; //UEIENX = (1<<TXINE); return ENABLE_MORE_TX; } send_status_force: if (do_media_status) { uint8_t current_media_state = media_state; if (current_media_state & MEDIA_STATE_CLAIMED) media_state = current_media_state | MEDIA_STATE_CLAIMED_STATUS; if (status == 0) { if (!(current_media_state & MEDIA_PRESENT_MASK)) { scsi_sense = SCSI_SENSE_NOT_READY; scsi_asense = SCSI_ASENSE_MEDIUM_NOT_PRESENT; status = 1; } else { if (!(previous_media_state & MEDIA_PRESENT_MASK)) { scsi_sense = SCSI_SENSE_UNIT_ATTENTION; scsi_asense = SCSI_ASENSE_NOT_READY_TO_READY; status = 1; } } } do_media_status = 0; } print("status "); phex(status); if (status) { phex(scsi_sense); phex(scsi_asense); } print("\n"); UEDATX = 0x55; UEDATX = 0x53; UEDATX = 0x42; UEDATX = 0x53; write_dword_lsbfirst(tag, UEDATX); write_dword_lsbfirst(xfer_len, UEDATX); UEDATX = status; UEINTX = 0x3A; //UEIENX = 0; ms_state = MS_STATE_IDLE; media_unlock_isr(); return ENABLE_MORE_RX; error_stall: print("\nStall\n"); ms_state = MS_STATE_STALLED; UENUM = DISK_RX_ENDPOINT; //UEIENX = 0; UECONX = (1<<STALLRQ) | (1<<EPEN); UENUM = DISK_TX_ENDPOINT; //UEIENX = 0; UECONX = (1<<STALLRQ) | (1<<EPEN); media_unlock_isr(); return ENABLE_MORE_RX | ENABLE_MORE_TX; } // Misc functions to wait for ready and send/receive packets static inline void usb_wait_in_ready(void) { while (!(UEINTX & (1<<TXINI))) ; } static inline void usb_send_in(void) { UEINTX = ~(1<<TXINI); } static inline void usb_wait_receive_out(void) { while (!(UEINTX & (1<<RXOUTI))) ; } static inline void usb_ack_out(void) { UEINTX = ~(1<<RXOUTI); } // USB Endpoint Interrupt - endpoint 0 is handled here. The // other endpoints are manipulated by the user-callable // functions, and the start-of-frame interrupt. // static inline void endpoint0_isr(void) __attribute__((always_inline)); static inline void endpoint0_isr(void) { uint8_t intbits; const uint8_t *list; const uint8_t *cfg; uint8_t i, n, len, en; uint8_t bmRequestType; uint8_t bRequest; uint16_t wValue; uint16_t wIndex; uint16_t wLength; uint16_t desc_val; const uint8_t *desc_addr; uint8_t desc_length; UENUM = 0; intbits = UEINTX; if (intbits & (1<<RXSTPI)) { bmRequestType = UEDATX; bRequest = UEDATX; read_word_lsbfirst(wValue, UEDATX); read_word_lsbfirst(wIndex, UEDATX); read_word_lsbfirst(wLength, UEDATX); UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI)); if (bRequest == GET_DESCRIPTOR) { list = (const uint8_t *)descriptor_list; for (i=0; ; i++) { if (i >= NUM_DESC_LIST) { UECONX = (1<<STALLRQ)|(1<<EPEN); //stall return; } pgm_read_word_postinc(desc_val, list); if (desc_val != wValue) { list += sizeof(struct descriptor_list_struct)-2; continue; } pgm_read_word_postinc(desc_val, list); if (desc_val != wIndex) { list += sizeof(struct descriptor_list_struct)-4; continue; } pgm_read_word_postinc(desc_addr, list); desc_length = pgm_read_byte(list); break; } len = (wLength < 256) ? wLength : 255; if (len > desc_length) len = desc_length; list = desc_addr; do { // wait for host ready for IN packet do { i = UEINTX; } while (!(i & ((1<<TXINI)|(1<<RXOUTI)))); if (i & (1<<RXOUTI)) return; // abort // send IN packet n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE; for (i = n; i; i--) { pgm_read_byte_postinc(UEDATX, list); } len -= n; usb_send_in(); } while (len || n == ENDPOINT0_SIZE); return; } if (bRequest == SET_ADDRESS) { usb_send_in(); usb_wait_in_ready(); UDADDR = wValue | (1<<ADDEN); return; } if (bRequest == SET_CONFIGURATION && bmRequestType == 0) { usb_configuration = wValue; debug_flush_timer = 0; usb_send_in(); cfg = endpoint_config_table; for (i=1; i<NUM_ENDPOINTS; i++) { UENUM = i; pgm_read_byte_postinc(en, cfg); UECONX = en; if (en) { pgm_read_byte_postinc(UECFG0X, cfg); pgm_read_byte_postinc(UECFG1X, cfg); } } UERST = 0x1E; UERST = 0; UENUM = DISK_RX_ENDPOINT; UEIENX = (1<<RXOUTE); return; } if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) { usb_wait_in_ready(); UEDATX = usb_configuration; usb_send_in(); return; } if (bRequest == GET_STATUS) { usb_wait_in_ready(); i = 0; if (bmRequestType == 0x82) { UENUM = wIndex; if (UECONX & (1<<STALLRQ)) i = 1; UENUM = 0; } UEDATX = i; UEDATX = 0; usb_send_in(); return; } if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE) && bmRequestType == 0x02 && wValue == 0) { i = wIndex & 0x7F; if (i >= 1 && i <= MAX_ENDPOINT) { usb_send_in(); UENUM = i; if (bRequest == SET_FEATURE) { UECONX = (1<<STALLRQ)|(1<<EPEN); } else { UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN); UERST = (1 << i); UERST = 0; if (i == DISK_TX_ENDPOINT) { UEIENX = (1<<TXINE); } } return; } } if (wIndex == KEYBOARD_INTERFACE) { if (bmRequestType == 0xA1) { if (bRequest == HID_GET_REPORT) { usb_wait_in_ready(); for (i=0; i < 8; i++) { UEDATX = keyboard_report_data[i]; } usb_send_in(); return; } if (bRequest == HID_GET_IDLE) { usb_wait_in_ready(); UEDATX = keyboard_idle_config; usb_send_in(); return; } if (bRequest == HID_GET_PROTOCOL) { usb_wait_in_ready(); UEDATX = keyboard_protocol; usb_send_in(); return; } } if (bmRequestType == 0x21) { if (bRequest == HID_SET_REPORT) { usb_wait_receive_out(); keyboard_leds = UEDATX; usb_ack_out(); usb_send_in(); return; } if (bRequest == HID_SET_IDLE) { keyboard_idle_config = (wValue >> 8); keyboard_idle_count = 0; //usb_wait_in_ready(); usb_send_in(); return; } if (bRequest == HID_SET_PROTOCOL) { keyboard_protocol = wValue; //usb_wait_in_ready(); usb_send_in(); return; } } } if (wIndex == DEBUG_INTERFACE) { if (bRequest == HID_GET_REPORT && bmRequestType == 0xA1) { len = wLength; do { // wait for host ready for IN packet do { i = UEINTX; } while (!(i & ((1<<TXINI)|(1<<RXOUTI)))); if (i & (1<<RXOUTI)) return; // abort // send IN packet n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE; for (i = n; i; i--) { UEDATX = 0; } len -= n; usb_send_in(); } while (len || n == ENDPOINT0_SIZE); return; } if (bRequest == HID_SET_REPORT && bmRequestType == 0x21) { if (wValue == 0x0300 && wLength == 0x0004) { uint8_t b1, b2, b3, b4; usb_wait_receive_out(); b1 = UEDATX; b2 = UEDATX; b3 = UEDATX; b4 = UEDATX; usb_ack_out(); usb_send_in(); if (b1 == 0xA9 && b2 == 0x45 && b3 == 0xC2 && b4 == 0x6B) _reboot_Teensyduino_(); if (b1 == 0x8B && b2 == 0xC5 && b3 == 0x1D && b4 == 0x70) _restart_Teensyduino_(); } } } if (bRequest == 0xC9 && bmRequestType == 0x40) { usb_send_in(); usb_wait_in_ready(); _restart_Teensyduino_(); } if (wIndex == DISK_INTERFACE) { if (bRequest == MS_BULK_ONLY_RESET && bmRequestType == 0x21) { usb_wait_in_ready(); ms_state = MS_STATE_IDLE; usb_send_in(); return; } } } UECONX = (1<<STALLRQ) | (1<<EPEN); // stall } // USB Endpoint Interrupt ISR(USB_COM_vect) { uint8_t epnum_save, r=0, need_rx=0, need_tx=0; // first, do endpoint 0 epnum_save = UENUM; endpoint0_isr(); // disable all USB interrupts UDIEN = 0; UENUM = 0; UEIENX = 0; UENUM = DISK_RX_ENDPOINT; if (UEIENX & (1<<RXOUTE)) { r = ENABLE_MORE_RX; if (UEINTX & (1<<RXOUTI)) need_rx=1; } UEIENX = 0; UENUM = DISK_TX_ENDPOINT; if (UEIENX & (1<<TXINE)) { r |= ENABLE_MORE_TX; if (UEINTX & (1<<TXINI)) need_tx=1; } UEIENX = 0; // run the mass storage, with non-USB interrupts enabled // so lengthy transfers don't starve other interrupts if (need_rx || need_tx) { sei(); r = mass_storage_isr(need_rx, need_tx); cli(); } // re-enable USB interrupts if (r & ENABLE_MORE_RX) { UENUM = DISK_RX_ENDPOINT; UEIENX = (1<<RXOUTE); } if (r & ENABLE_MORE_TX) { UENUM = DISK_TX_ENDPOINT; UEIENX = (1<<TXINE); } UENUM = 0; UEIENX = (1<<RXSTPE); UDIEN = (1<<EORSTE)|(1<<SOFE); UENUM = epnum_save; } // USB Device Interrupt - handle all device-level events // the transmit buffer flushing is triggered by the start of frame // ISR(USB_GEN_vect) { uint8_t intbits, t, i; static uint8_t div4=0; intbits = UDINT; UDINT = 0; if (intbits & (1<<EORSTI)) { UENUM = 0; UECONX = 1; UECFG0X = EP_TYPE_CONTROL; UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER; UEIENX = (1<<RXSTPE); usb_configuration = 0; UENUM = DISK_RX_ENDPOINT; UEIENX = 0; UENUM = DISK_TX_ENDPOINT; UEIENX = 0; ms_state = MS_STATE_IDLE; } if ((intbits & (1<<SOFI)) && usb_configuration) { t = debug_flush_timer; if (t) { debug_flush_timer = -- t; if (!t) { UENUM = DEBUG_TX_ENDPOINT; while ((UEINTX & (1<<RWAL))) { UEDATX = 0; } UEINTX = 0x3A; } } if (keyboard_idle_config && (++div4 & 3) == 0) { UENUM = KEYBOARD_ENDPOINT; if (UEINTX & (1<<RWAL)) { keyboard_idle_count++; if (keyboard_idle_count == keyboard_idle_config) { keyboard_idle_count = 0; for (i=0; i < 8; i++) { UEDATX = keyboard_report_data[i]; } UEINTX = 0x3A; } } } } if (intbits & (1<<SUSPI)) { // USB Suspend (inactivity for 3ms) UDIEN = (1<<WAKEUPE); usb_configuration = 0; usb_suspended = 1; #if (F_CPU >= 8000000L) // WAKEUPI does not work with USB clock freeze // when CPU is running less than 8 MHz. // Is this a hardware bug? USB_FREEZE(); // shut off USB PLLCSR = 0; // shut off PLL #endif // to properly meet the USB spec, current must // reduce to less than 2.5 mA, which means using // powerdown mode, but that breaks the Arduino // user's paradigm.... } if (usb_suspended && (intbits & (1<<WAKEUPI))) { // USB Resume (pretty much any activity) #if (F_CPU >= 8000000L) PLL_CONFIG(); while (!(PLLCSR & (1<<PLOCK))) ; USB_CONFIG(); #endif UDIEN = (1<<EORSTE)|(1<<SOFE)|(1<<SUSPE); usb_suspended = 0; return; } }