|
- #ifndef DMAChannel_h_
- #define DMAChannel_h_
-
- #include "kinetis.h"
-
- // This code is a work-in-progress. It's incomplete and not usable yet...
- //
- // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
-
-
- // known libraries with DMA usage (in need of porting to this new scheme):
- //
- // https://github.com/PaulStoffregen/Audio
- // https://github.com/PaulStoffregen/OctoWS2811
- // https://github.com/pedvide/ADC
- // https://github.com/duff2013/SerialEvent
- // https://github.com/pixelmatix/SmartMatrix
- // https://github.com/crteensy/DmaSpi
-
-
- #ifdef __cplusplus
-
-
- class DMABaseClass {
- public:
- typedef struct __attribute__((packed)) {
- volatile const void * volatile SADDR;
- int16_t SOFF;
- union { uint16_t ATTR;
- struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
- union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
- uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
- int32_t SLAST;
- volatile void * volatile DADDR;
- int16_t DOFF;
- union { volatile uint16_t CITER;
- volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
- int32_t DLASTSGA;
- volatile uint16_t CSR;
- union { volatile uint16_t BITER;
- volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
- } TCD_t;
- TCD_t *TCD;
-
- /***************************************/
- /** Data Transfer **/
- /***************************************/
-
- // Use a single variable as the data source. Typically a register
- // for receiving data from one of the hardware peripherals is used.
- void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
- void source(volatile const unsigned char &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 0;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
- TCD->SLAST = 0;
- }
- void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
- void source(volatile const unsigned short &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 1;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
- TCD->SLAST = 0;
- }
- void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned long &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 2;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
- TCD->SLAST = 0;
- }
-
- // Use a buffer (array of data) as the data source. Typically a
- // buffer for transmitting data is used.
- void sourceBuffer(volatile const signed char p[], unsigned int len) {
- sourceBuffer((volatile const uint8_t *)p, len); }
- void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 1;
- TCD->ATTR_SRC = 0;
- TCD->NBYTES = 1;
- TCD->SLAST = -len;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void sourceBuffer(volatile const signed short p[], unsigned int len) {
- sourceBuffer((volatile const uint16_t *)p, len); }
- void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 2;
- TCD->ATTR_SRC = 1;
- TCD->NBYTES = 2;
- TCD->SLAST = -len;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void sourceBuffer(volatile const signed int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const signed long p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 4;
- TCD->ATTR_SRC = 2;
- TCD->NBYTES = 4;
- TCD->SLAST = -len;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a circular buffer as the data source
- void sourceCircular(volatile const signed char p[], unsigned int len) {
- sourceCircular((volatile const uint8_t *)p, len); }
- void sourceCircular(volatile const unsigned char p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 1;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
- TCD->NBYTES = 1;
- TCD->SLAST = 0;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void sourceCircular(volatile const signed short p[], unsigned int len) {
- sourceCircular((volatile const uint16_t *)p, len); }
- void sourceCircular(volatile const unsigned short p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 2;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
- TCD->NBYTES = 2;
- TCD->SLAST = 0;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void sourceCircular(volatile const signed int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const signed long p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned long p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 4;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
- TCD->NBYTES = 4;
- TCD->SLAST = 0;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a single variable as the data destination. Typically a register
- // for transmitting data to one of the hardware peripherals is used.
- void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
- void destination(volatile unsigned char &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 0;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
- TCD->DLASTSGA = 0;
- }
- void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
- void destination(volatile unsigned short &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 1;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
- TCD->DLASTSGA = 0;
- }
- void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned long &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 2;
- if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
- TCD->DLASTSGA = 0;
- }
-
- // Use a buffer (array of data) as the data destination. Typically a
- // buffer for receiving data is used.
- void destinationBuffer(volatile signed char p[], unsigned int len) {
- destinationBuffer((volatile uint8_t *)p, len); }
- void destinationBuffer(volatile unsigned char p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 1;
- TCD->ATTR_DST = 0;
- TCD->NBYTES = 1;
- TCD->DLASTSGA = -len;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void destinationBuffer(volatile signed short p[], unsigned int len) {
- destinationBuffer((volatile uint16_t *)p, len); }
- void destinationBuffer(volatile unsigned short p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 2;
- TCD->ATTR_DST = 1;
- TCD->NBYTES = 2;
- TCD->DLASTSGA = -len;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void destinationBuffer(volatile signed int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile signed long p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned long p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 4;
- TCD->ATTR_DST = 2;
- TCD->NBYTES = 4;
- TCD->DLASTSGA = -len;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a circular buffer as the data destination
- void destinationCircular(volatile signed char p[], unsigned int len) {
- destinationCircular((volatile uint8_t *)p, len); }
- void destinationCircular(volatile unsigned char p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 1;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3);
- TCD->NBYTES = 1;
- TCD->DLASTSGA = 0;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void destinationCircular(volatile signed short p[], unsigned int len) {
- destinationCircular((volatile uint16_t *)p, len); }
- void destinationCircular(volatile unsigned short p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 2;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
- TCD->NBYTES = 2;
- TCD->DLASTSGA = 0;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void destinationCircular(volatile signed int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile signed long p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned long p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 4;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
- TCD->NBYTES = 4;
- TCD->DLASTSGA = 0;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- /*************************************************/
- /** Quantity of Data to Transfer **/
- /*************************************************/
-
- // Set the data size used for each triggered transfer
- void transferSize(unsigned int len) {
- if (len == 4) {
- TCD->NBYTES = 4;
- if (TCD->SOFF != 0) TCD->SOFF = 4;
- if (TCD->DOFF != 0) TCD->DOFF = 4;
- TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202;
- } else if (len == 2) {
- TCD->NBYTES = 2;
- if (TCD->SOFF != 0) TCD->SOFF = 2;
- if (TCD->DOFF != 0) TCD->DOFF = 2;
- TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101;
- } else {
- TCD->NBYTES = 1;
- if (TCD->SOFF != 0) TCD->SOFF = 1;
- if (TCD->DOFF != 0) TCD->DOFF = 1;
- TCD->ATTR = TCD->ATTR & 0xF8F8;
- }
- }
-
- // Set the number of transfers (number of triggers until complete)
- void transferCount(unsigned int len) {
- if (len > 32767) return;
- if (len >= 512) {
- TCD->BITER = len;
- TCD->CITER = len;
- } else {
- TCD->BITER = (TCD->BITER & 0xFE00) | len;
- TCD->CITER = (TCD->CITER & 0xFE00) | len;
- }
- }
-
- /*************************************************/
- /** Special Options / Features **/
- /*************************************************/
-
- void interruptAtCompletion(void) {
- TCD->CSR |= DMA_TCD_CSR_INTMAJOR;
- }
-
- void interruptAtHalf(void) {
- TCD->CSR |= DMA_TCD_CSR_INTHALF;
- }
-
- void disableOnCompletion(void) {
- TCD->CSR |= DMA_TCD_CSR_DREQ;
- }
-
- void replaceSettingsOnCompletion(const DMABaseClass &settings) {
- TCD->DLASTSGA = (int32_t)(settings.TCD);
- TCD->CSR &= ~DMA_TCD_CSR_DONE;
- TCD->CSR |= DMA_TCD_CSR_ESG;
- }
-
- protected:
- // users should not be able to create instances of DMABaseClass, which
- // require the inheriting class to initialize the TCD pointer.
- DMABaseClass() {}
-
- static inline void copy_tcd(TCD_t *dst, const TCD_t *src) {
- const uint32_t *p = (const uint32_t *)src;
- uint32_t *q = (uint32_t *)dst;
- uint32_t t1, t2, t3, t4;
- t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
- *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
- t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
- *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
- }
- };
-
-
- // DMASetting represents settings stored only in memory, which can be
- // applied to any DMA channel.
-
- class DMASetting : public DMABaseClass {
- public:
- DMASetting() {
- TCD = &tcddata;
- }
- DMASetting(const DMASetting &c) {
- TCD = &tcddata;
- *this = c;
- }
- DMASetting(const DMABaseClass &c) {
- TCD = &tcddata;
- *this = c;
- }
- DMASetting & operator = (const DMABaseClass &rhs) {
- copy_tcd(TCD, rhs.TCD);
- return *this;
- }
- private:
- TCD_t tcddata __attribute__((aligned(32)));
- };
-
-
- // DMAChannel reprents an actual DMA channel and its current settings
-
- class DMAChannel : public DMABaseClass {
- public:
- /*************************************************/
- /** Channel Allocation **/
- /*************************************************/
-
- DMAChannel() {
- init();
- }
- DMAChannel(const DMAChannel &c) {
- TCD = c.TCD;
- channel = c.channel;
- }
- DMAChannel(const DMASetting &c) {
- init();
- copy_tcd(TCD, c.TCD);
- }
- DMAChannel & operator = (const DMAChannel &rhs) {
- if (channel != rhs.channel) {
- release();
- TCD = rhs.TCD;
- channel = rhs.channel;
- }
- return *this;
- }
- DMAChannel & operator = (const DMASetting &rhs) {
- copy_tcd(TCD, rhs.TCD);
- return *this;
- }
- ~DMAChannel() {
- release();
- }
- private:
- void init(void);
- void release(void);
-
- public:
- /***************************************/
- /** Triggering **/
- /***************************************/
-
- // Triggers cause the DMA channel to actually move data. Each
- // trigger moves a single data unit, which is typically 8, 16 or
- // 32 bits. If a channel is configured for 200 transfers
-
- // Use a hardware trigger to make the DMA channel run
- void triggerAtHardwareEvent(uint8_t source) {
- volatile uint8_t *mux;
- mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
- *mux = 0;
- *mux = (source & 63) | DMAMUX_ENABLE;
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger after each transfer is makes, except
- // the its last transfer. This effectively makes the 2
- // channels run in parallel until the last transfer
- void triggerAtTransfersOf(DMABaseClass &ch) {
- ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
- | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
- ch.TCD->CITER = ch.TCD->BITER ;
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger when the other channel completes.
- void triggerAtCompletionOf(DMABaseClass &ch) {
- ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE))
- | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
- }
-
- // Cause this DMA channel to be continuously triggered, so
- // it will move data as rapidly as possible, without waiting.
- // Normally this would be used with disableOnCompletion().
- void triggerContinuously(void) {
- volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
- mux[channel] = 0;
- #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
- mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
- #else
- // search for an unused "always on" source
- unsigned int i = DMAMUX_SOURCE_ALWAYS0;
- for (i = DMAMUX_SOURCE_ALWAYS0;
- i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
- unsigned int ch;
- for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
- if (mux[ch] == i) break;
- }
- if (ch >= DMA_NUM_CHANNELS) {
- mux[channel] = (i | DMAMUX_ENABLE);
- return;
- }
- }
- #endif
- }
-
- // Manually trigger the DMA channel.
- void triggerManual(void) {
- DMA_SSRT = channel;
- }
-
-
- /***************************************/
- /** Interrupts **/
- /***************************************/
-
- // An interrupt routine can be run when the DMA channel completes
- // the entire transfer, and also optionally when half of the
- // transfer is completed.
- void attachInterrupt(void (*isr)(void)) {
- _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
- NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void detachInterrupt(void) {
- NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void clearInterrupt(void) {
- DMA_CINT = channel;
- }
-
-
- /***************************************/
- /** Enable / Disable **/
- /***************************************/
-
- void enable(void) {
- DMA_SERQ = channel;
- }
- void disable(void) {
- DMA_CERQ = channel;
- }
-
- /***************************************/
- /** Status **/
- /***************************************/
-
- bool complete(void) {
- if (TCD->CSR & DMA_TCD_CSR_DONE) return true;
- return false;
- }
- void clearComplete(void) {
- DMA_CDNE = channel;
- }
- bool error(void) {
- if (DMA_ERR & (1<<channel)) return true;
- return false;
- }
- void clearError(void) {
- DMA_CERR = channel;
- }
- void * sourceAddress(void) {
- return (void *)(TCD->SADDR);
- }
- void * destinationAddress(void) {
- return (void *)(TCD->DADDR);
- }
-
- /***************************************/
- /** Direct Hardware Access **/
- /***************************************/
-
- // For complex and unusual configurations not possible with the above
- // functions, the Transfer Control Descriptor (TCD) and channel number
- // can be used directly. This leads to less portable and less readable
- // code, but direct control of all parameters is possible.
- uint8_t channel;
- // TCD is accessible due to inheritance from DMABaseClass
-
- /* usage cases:
-
- ************************
- OctoWS2811:
- ************************
-
- // enable clocks to the DMA controller and DMAMUX
- SIM_SCGC7 |= SIM_SCGC7_DMA;
- SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
- DMA_CR = 0;
- DMA_CERQ = 1;
- DMA_CERQ = 2;
- DMA_CERQ = 3;
-
- // DMA channel #1 sets WS2811 high at the beginning of each cycle
- DMA_TCD1_SADDR = &ones;
- DMA_TCD1_SOFF = 0;
- DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
- DMA_TCD1_NBYTES_MLNO = 1;
- DMA_TCD1_SLAST = 0;
- DMA_TCD1_DADDR = &GPIOD_PSOR;
- DMA_TCD1_DOFF = 0;
- DMA_TCD1_CITER_ELINKNO = bufsize;
- DMA_TCD1_DLASTSGA = 0;
- DMA_TCD1_CSR = DMA_TCD_CSR_DREQ;
- DMA_TCD1_BITER_ELINKNO = bufsize;
- dma1.source(ones);
- dma1.destination(GPIOD_PSOR);
- dma1.size(1);
- dma1.count(bufsize);
- dma1.disableOnCompletion();
-
- // DMA channel #2 writes the pixel data at 20% of the cycle
- DMA_TCD2_SADDR = frameBuffer;
- DMA_TCD2_SOFF = 1;
- DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
- DMA_TCD2_NBYTES_MLNO = 1;
- DMA_TCD2_SLAST = -bufsize;
- DMA_TCD2_DADDR = &GPIOD_PDOR;
- DMA_TCD2_DOFF = 0;
- DMA_TCD2_CITER_ELINKNO = bufsize;
- DMA_TCD2_DLASTSGA = 0;
- DMA_TCD2_CSR = DMA_TCD_CSR_DREQ;
- DMA_TCD2_BITER_ELINKNO = bufsize;
- dma2.source(frameBuffer, sizeof(frameBuffer));
- dma2.destination(GPIOD_PDOR);
- dma2.size(1);
- dma2.count(bufsize);
- dma2.disableOnCompletion();
-
- // DMA channel #3 clear all the pins low at 48% of the cycle
- DMA_TCD3_SADDR = &ones;
- DMA_TCD3_SOFF = 0;
- DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
- DMA_TCD3_NBYTES_MLNO = 1;
- DMA_TCD3_SLAST = 0;
- DMA_TCD3_DADDR = &GPIOD_PCOR;
- DMA_TCD3_DOFF = 0;
- DMA_TCD3_CITER_ELINKNO = bufsize;
- DMA_TCD3_DLASTSGA = 0;
- DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR;
- DMA_TCD3_BITER_ELINKNO = bufsize;
- dma3.source(ones);
- dma3.destination(GPIOD_PCOR);
- dma3.size(1);
- dma3.count(bufsize);
- dma3.disableOnCompletion();
-
- ************************
- Audio, DAC
- ************************
-
- DMA_CR = 0;
- DMA_TCD4_SADDR = dac_buffer;
- DMA_TCD4_SOFF = 2;
- DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- DMA_TCD4_NBYTES_MLNO = 2;
- DMA_TCD4_SLAST = -sizeof(dac_buffer);
- DMA_TCD4_DADDR = &DAC0_DAT0L;
- DMA_TCD4_DOFF = 0;
- DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2;
- DMA_TCD4_DLASTSGA = 0;
- DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2;
- DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
- DMAMUX0_CHCFG4 = DMAMUX_DISABLE;
- DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE;
-
- ************************
- Audio, I2S
- ************************
-
- DMA_CR = 0;
- DMA_TCD0_SADDR = i2s_tx_buffer;
- DMA_TCD0_SOFF = 2;
- DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- DMA_TCD0_NBYTES_MLNO = 2;
- DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer);
- DMA_TCD0_DADDR = &I2S0_TDR0;
- DMA_TCD0_DOFF = 0;
- DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
- DMA_TCD0_DLASTSGA = 0;
- DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
- DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
-
- DMAMUX0_CHCFG0 = DMAMUX_DISABLE;
- DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE;
-
- ************************
- ADC lib, Pedro Villanueva
- ************************
-
- DMA_CR = 0; // normal mode of operation
-
- *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing
-
- *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
- DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
- DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values
- *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop)
-
- *DMA_TCD_SADDR = ADC_RA; // source address
- *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes
- *DMA_TCD_SLAST = 0; // don't change src address after major loop completes
-
- *DMA_TCD_DADDR = elems; // destination address
- *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop
- *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element
-
- *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled
- *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled
-
- *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete
-
- DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request
- DMA_CINT = DMA_channel; // clear interrupts
-
- uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0;
- if(ADC_number==1){
- DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1;
- }
- *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0
-
- DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request
- NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts
-
- ************************
- SmartMatrix
- ************************
-
- // enable minor loop mapping so addresses can get reset after minor loops
- DMA_CR = 1 << 7;
-
- // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO
- // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins
- // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2)
- // only use single major loop, never disable channel
- #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2
- DMA_TCD0_SADDR = &gpiosync.gpio_pcor;
- DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
- DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
- DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
- // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete
- // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop
- DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE |
- ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) |
- (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor));
- // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset)
- DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER;
- // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER
- DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER;
- DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
- // single major loop
- DMA_TCD0_CITER_ELINKNO = 1;
- DMA_TCD0_BITER_ELINKNO = 1;
- // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete
- DMA_TCD0_CSR = (1 << 8) | (1 << 5);
- DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE;
-
- // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle
- // only use single major loop, never disable channel
- DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues;
- DMA_TCD1_SOFF = sizeof(uint16_t);
- DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
- DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- // 16-bit = 2 bytes transferred
- // transfer two 16-bit values, reset destination address back after each minor loop
- DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
- // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset)
- DMA_TCD1_DADDR = &gpiosync.gpio_pcor;
- DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
- DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor));
- // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete
- DMA_TCD1_CITER_ELINKNO = 1;
- DMA_TCD1_BITER_ELINKNO = 1;
- DMA_TCD1_CSR = 0;
-
- // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block
- // only use single major loop, never disable channel
- // link to channel 3 when complete
- #define TIMER_REGISTERS_TO_UPDATE 2
- DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe;
- DMA_TCD2_SOFF = sizeof(uint16_t);
- DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t));
- DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- // 16-bit = 2 bytes transferred
- DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t);
- DMA_TCD2_DADDR = &FTM1_C1V;
- DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V;
- DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD);
- // no minor loop linking, single major loop
- DMA_TCD2_CITER_ELINKNO = 1;
- DMA_TCD2_BITER_ELINKNO = 1;
- // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete
- DMA_TCD2_CSR = (3 << 8) | (1 << 5);
- DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE;
-
- #define DMA_TCD_MLOFF_MASK (0x3FFFFC00)
-
- // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete
- DMA_TCD3_SADDR = matrixUpdateData[0][0];
- DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2;
- // SADDR will get updated by ISR, no need to set SLAST
- DMA_TCD3_SLAST = 0;
- DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
- // after each minor loop, set source to point back to the beginning of this set of data,
- // but advance by 1 byte to get the next significant bits data
- DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE |
- (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) |
- (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK);
- DMA_TCD3_DADDR = &GPIOD_PDOR;
- DMA_TCD3_DOFF = 0;
- DMA_TCD3_DLASTSGA = 0;
- DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW;
- DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW;
- // int after major loop is complete
- DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR;
- // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer)
- //DMA_TCD3_CSR |= (0x02 << 14);
-
- // enable a done interrupt when all DMA operations are complete
- NVIC_ENABLE_IRQ(IRQ_DMA_CH3);
-
- // enable additional dma interrupt used as software interrupt
- NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority
- NVIC_ENABLE_IRQ(IRQ_DMA_CH1);
-
- // enable channels 0, 1, 2, 3
- DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
-
- // at the end after everything is set up: enable timer from system clock, with appropriate prescale
- FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE);
-
-
- */
-
-
- };
-
- // arrange the relative priority of 2 or more DMA channels
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
-
-
-
- extern "C" {
- #endif
- extern uint16_t dma_channel_allocated_mask;
- #ifdef __cplusplus
- }
- #endif
-
-
-
- #endif
|