Teensy 4.1 core updated for C++20
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

565 linhas
16KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. #if defined(KINETISK)
  86. static uint8_t rx_pin_num = 9;
  87. static uint8_t tx_pin_num = 10;
  88. #endif
  89. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  90. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  91. #ifdef HAS_KINETISK_UART1_FIFO
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  93. #else
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  95. #endif
  96. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  97. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  98. #define C2_TX_INACTIVE C2_ENABLE
  99. void serial2_begin(uint32_t divisor)
  100. {
  101. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  102. rx_buffer_head = 0;
  103. rx_buffer_tail = 0;
  104. tx_buffer_head = 0;
  105. tx_buffer_tail = 0;
  106. transmitting = 0;
  107. #if defined(KINETISK)
  108. switch (rx_pin_num) {
  109. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  110. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. }
  112. switch (tx_pin_num) {
  113. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. }
  116. #elif defined(KINETISL)
  117. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  118. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  119. #endif
  120. #if defined(HAS_KINETISK_UART1)
  121. UART1_BDH = (divisor >> 13) & 0x1F;
  122. UART1_BDL = (divisor >> 5) & 0xFF;
  123. UART1_C4 = divisor & 0x1F;
  124. #ifdef HAS_KINETISK_UART1_FIFO
  125. UART1_C1 = UART_C1_ILT;
  126. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  127. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  128. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  129. #else
  130. UART1_C1 = 0;
  131. UART1_PFIFO = 0;
  132. #endif
  133. #elif defined(HAS_KINETISL_UART1)
  134. UART1_BDH = (divisor >> 8) & 0x1F;
  135. UART1_BDL = divisor & 0xFF;
  136. UART1_C1 = 0;
  137. #endif
  138. UART1_C2 = C2_TX_INACTIVE;
  139. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  140. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  141. }
  142. void serial2_format(uint32_t format)
  143. {
  144. uint8_t c;
  145. c = UART1_C1;
  146. c = (c & ~0x13) | (format & 0x03); // configure parity
  147. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  148. UART1_C1 = c;
  149. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  150. c = UART1_S2 & ~0x10;
  151. if (format & 0x10) c |= 0x10; // rx invert
  152. UART1_S2 = c;
  153. c = UART1_C3 & ~0x10;
  154. if (format & 0x20) c |= 0x10; // tx invert
  155. UART1_C3 = c;
  156. #ifdef SERIAL_9BIT_SUPPORT
  157. c = UART1_C4 & 0x1F;
  158. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  159. UART1_C4 = c;
  160. use9Bits = format & 0x80;
  161. #endif
  162. // UART1_C1.0 = parity, 0=even, 1=odd
  163. // UART1_C1.1 = parity, 0=disable, 1=enable
  164. // UART1_C1.4 = mode, 1=9bit, 0=8bit
  165. // UART1_C4.5 = mode, 1=10bit, 0=8bit
  166. // UART1_C3.4 = txinv, 0=normal, 1=inverted
  167. // UART1_S2.4 = rxinv, 0=normal, 1=inverted
  168. }
  169. void serial2_end(void)
  170. {
  171. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  172. while (transmitting) yield(); // wait for buffered data to send
  173. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  174. UART1_C2 = 0;
  175. switch (rx_pin_num) {
  176. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  177. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  178. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  179. #endif
  180. }
  181. switch (tx_pin_num & 127) {
  182. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  183. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  184. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  185. #endif
  186. }
  187. rx_buffer_head = 0;
  188. rx_buffer_tail = 0;
  189. if (rts_pin) rts_deassert();
  190. }
  191. void serial2_set_transmit_pin(uint8_t pin)
  192. {
  193. while (transmitting) ;
  194. pinMode(pin, OUTPUT);
  195. digitalWrite(pin, LOW);
  196. transmit_pin = portOutputRegister(pin);
  197. #if defined(KINETISL)
  198. transmit_mask = digitalPinToBitMask(pin);
  199. #endif
  200. }
  201. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  202. {
  203. #if defined(KINETISK)
  204. uint32_t cfg;
  205. if (opendrain) pin |= 128;
  206. if (pin == tx_pin_num) return;
  207. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  208. switch (tx_pin_num & 127) {
  209. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  210. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  211. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  212. #endif
  213. }
  214. if (opendrain) {
  215. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  216. } else {
  217. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  218. }
  219. switch (pin & 127) {
  220. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  221. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  222. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  223. #endif
  224. }
  225. }
  226. tx_pin_num = pin;
  227. #endif
  228. }
  229. void serial2_set_rx(uint8_t pin)
  230. {
  231. #if defined(KINETISK)
  232. if (pin == rx_pin_num) return;
  233. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  234. switch (rx_pin_num) {
  235. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  236. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  237. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  238. #endif
  239. }
  240. switch (pin) {
  241. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  242. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  243. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  244. #endif
  245. }
  246. }
  247. rx_pin_num = pin;
  248. #endif
  249. }
  250. int serial2_set_rts(uint8_t pin)
  251. {
  252. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  253. if (pin < CORE_NUM_DIGITAL) {
  254. rts_pin = portOutputRegister(pin);
  255. #if defined(KINETISL)
  256. rts_mask = digitalPinToBitMask(pin);
  257. #endif
  258. pinMode(pin, OUTPUT);
  259. rts_assert();
  260. } else {
  261. rts_pin = NULL;
  262. return 0;
  263. }
  264. /*
  265. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  266. if (pin == 22) {
  267. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  268. } else {
  269. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  270. return 0;
  271. }
  272. UART1_MODEM |= UART_MODEM_RXRTSE;
  273. */
  274. return 1;
  275. }
  276. int serial2_set_cts(uint8_t pin)
  277. {
  278. #if defined(KINETISK)
  279. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  280. if (pin == 23) {
  281. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  282. } else {
  283. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  284. return 0;
  285. }
  286. UART1_MODEM |= UART_MODEM_TXCTSE;
  287. return 1;
  288. #else
  289. return 0;
  290. #endif
  291. }
  292. void serial2_putchar(uint32_t c)
  293. {
  294. uint32_t head, n;
  295. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  296. if (transmit_pin) transmit_assert();
  297. head = tx_buffer_head;
  298. if (++head >= TX_BUFFER_SIZE) head = 0;
  299. while (tx_buffer_tail == head) {
  300. int priority = nvic_execution_priority();
  301. if (priority <= IRQ_PRIORITY) {
  302. if ((UART1_S1 & UART_S1_TDRE)) {
  303. uint32_t tail = tx_buffer_tail;
  304. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  305. n = tx_buffer[tail];
  306. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  307. UART1_D = n;
  308. tx_buffer_tail = tail;
  309. }
  310. } else if (priority >= 256) {
  311. yield(); // wait
  312. }
  313. }
  314. tx_buffer[head] = c;
  315. transmitting = 1;
  316. tx_buffer_head = head;
  317. UART1_C2 = C2_TX_ACTIVE;
  318. }
  319. #ifdef HAS_KINETISK_UART1_FIFO
  320. void serial2_write(const void *buf, unsigned int count)
  321. {
  322. const uint8_t *p = (const uint8_t *)buf;
  323. const uint8_t *end = p + count;
  324. uint32_t head, n;
  325. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  326. if (transmit_pin) transmit_assert();
  327. while (p < end) {
  328. head = tx_buffer_head;
  329. if (++head >= TX_BUFFER_SIZE) head = 0;
  330. if (tx_buffer_tail == head) {
  331. UART1_C2 = C2_TX_ACTIVE;
  332. do {
  333. int priority = nvic_execution_priority();
  334. if (priority <= IRQ_PRIORITY) {
  335. if ((UART1_S1 & UART_S1_TDRE)) {
  336. uint32_t tail = tx_buffer_tail;
  337. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  338. n = tx_buffer[tail];
  339. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  340. UART1_D = n;
  341. tx_buffer_tail = tail;
  342. }
  343. } else if (priority >= 256) {
  344. yield();
  345. }
  346. } while (tx_buffer_tail == head);
  347. }
  348. tx_buffer[head] = *p++;
  349. transmitting = 1;
  350. tx_buffer_head = head;
  351. }
  352. UART1_C2 = C2_TX_ACTIVE;
  353. }
  354. #else
  355. void serial2_write(const void *buf, unsigned int count)
  356. {
  357. const uint8_t *p = (const uint8_t *)buf;
  358. while (count-- > 0) serial2_putchar(*p++);
  359. }
  360. #endif
  361. void serial2_flush(void)
  362. {
  363. while (transmitting) yield(); // wait
  364. }
  365. int serial2_write_buffer_free(void)
  366. {
  367. uint32_t head, tail;
  368. head = tx_buffer_head;
  369. tail = tx_buffer_tail;
  370. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  371. return tail - head - 1;
  372. }
  373. int serial2_available(void)
  374. {
  375. uint32_t head, tail;
  376. head = rx_buffer_head;
  377. tail = rx_buffer_tail;
  378. if (head >= tail) return head - tail;
  379. return RX_BUFFER_SIZE + head - tail;
  380. }
  381. int serial2_getchar(void)
  382. {
  383. uint32_t head, tail;
  384. int c;
  385. head = rx_buffer_head;
  386. tail = rx_buffer_tail;
  387. if (head == tail) return -1;
  388. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  389. c = rx_buffer[tail];
  390. rx_buffer_tail = tail;
  391. if (rts_pin) {
  392. int avail;
  393. if (head >= tail) avail = head - tail;
  394. else avail = RX_BUFFER_SIZE + head - tail;
  395. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  396. }
  397. return c;
  398. }
  399. int serial2_peek(void)
  400. {
  401. uint32_t head, tail;
  402. head = rx_buffer_head;
  403. tail = rx_buffer_tail;
  404. if (head == tail) return -1;
  405. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  406. return rx_buffer[tail];
  407. }
  408. void serial2_clear(void)
  409. {
  410. #ifdef HAS_KINETISK_UART1_FIFO
  411. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  412. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  413. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  414. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  415. #endif
  416. rx_buffer_head = rx_buffer_tail;
  417. if (rts_pin) rts_assert();
  418. }
  419. // status interrupt combines
  420. // Transmit data below watermark UART_S1_TDRE
  421. // Transmit complete UART_S1_TC
  422. // Idle line UART_S1_IDLE
  423. // Receive data above watermark UART_S1_RDRF
  424. // LIN break detect UART_S2_LBKDIF
  425. // RxD pin active edge UART_S2_RXEDGIF
  426. void uart1_status_isr(void)
  427. {
  428. uint32_t head, tail, n;
  429. uint8_t c;
  430. #ifdef HAS_KINETISK_UART1_FIFO
  431. uint32_t newhead;
  432. uint8_t avail;
  433. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  434. __disable_irq();
  435. avail = UART1_RCFIFO;
  436. if (avail == 0) {
  437. // The only way to clear the IDLE interrupt flag is
  438. // to read the data register. But reading with no
  439. // data causes a FIFO underrun, which causes the
  440. // FIFO to return corrupted data. If anyone from
  441. // Freescale reads this, what a poor design! There
  442. // write should be a write-1-to-clear for IDLE.
  443. c = UART1_D;
  444. // flushing the fifo recovers from the underrun,
  445. // but there's a possible race condition where a
  446. // new character could be received between reading
  447. // RCFIFO == 0 and flushing the FIFO. To minimize
  448. // the chance, interrupts are disabled so a higher
  449. // priority interrupt (hopefully) doesn't delay.
  450. // TODO: change this to disabling the IDLE interrupt
  451. // which won't be simple, since we already manage
  452. // which transmit interrupts are enabled.
  453. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  454. __enable_irq();
  455. } else {
  456. __enable_irq();
  457. head = rx_buffer_head;
  458. tail = rx_buffer_tail;
  459. do {
  460. if (use9Bits && (UART1_C3 & 0x80)) {
  461. n = UART1_D | 0x100;
  462. } else {
  463. n = UART1_D;
  464. }
  465. newhead = head + 1;
  466. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  467. if (newhead != tail) {
  468. head = newhead;
  469. rx_buffer[head] = n;
  470. }
  471. } while (--avail > 0);
  472. rx_buffer_head = head;
  473. if (rts_pin) {
  474. int avail;
  475. if (head >= tail) avail = head - tail;
  476. else avail = RX_BUFFER_SIZE + head - tail;
  477. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  478. }
  479. }
  480. }
  481. c = UART1_C2;
  482. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  483. head = tx_buffer_head;
  484. tail = tx_buffer_tail;
  485. do {
  486. if (tail == head) break;
  487. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  488. avail = UART1_S1;
  489. n = tx_buffer[tail];
  490. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  491. UART1_D = n;
  492. } while (UART1_TCFIFO < 8);
  493. tx_buffer_tail = tail;
  494. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  495. }
  496. #else
  497. if (UART1_S1 & UART_S1_RDRF) {
  498. n = UART1_D;
  499. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  500. head = rx_buffer_head + 1;
  501. if (head >= RX_BUFFER_SIZE) head = 0;
  502. if (head != rx_buffer_tail) {
  503. rx_buffer[head] = n;
  504. rx_buffer_head = head;
  505. }
  506. }
  507. c = UART1_C2;
  508. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  509. head = tx_buffer_head;
  510. tail = tx_buffer_tail;
  511. if (head == tail) {
  512. UART1_C2 = C2_TX_COMPLETING;
  513. } else {
  514. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  515. n = tx_buffer[tail];
  516. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  517. UART1_D = n;
  518. tx_buffer_tail = tail;
  519. }
  520. }
  521. #endif
  522. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  523. transmitting = 0;
  524. if (transmit_pin) transmit_deassert();
  525. UART1_C2 = C2_TX_INACTIVE;
  526. }
  527. }