Teensy 4.1 core updated for C++20
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

400 行
11KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #ifdef HAS_KINETISK_UART4
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #ifndef SERIAL5_TX_BUFFER_SIZE
  38. #define SERIAL5_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  39. #endif
  40. #ifndef SERIAL5_RX_BUFFER_SIZE
  41. #define SERIAL5_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  42. #endif
  43. #define RTS_HIGH_WATERMARK (SERIAL5_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  44. #define RTS_LOW_WATERMARK (SERIAL5_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  45. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  46. ////////////////////////////////////////////////////////////////
  47. // changes not recommended below this point....
  48. ////////////////////////////////////////////////////////////////
  49. #ifdef SERIAL_9BIT_SUPPORT
  50. static uint8_t use9Bits = 0;
  51. #define BUFTYPE uint16_t
  52. #else
  53. #define BUFTYPE uint8_t
  54. #define use9Bits 0
  55. #endif
  56. static volatile BUFTYPE tx_buffer[SERIAL5_TX_BUFFER_SIZE];
  57. static volatile BUFTYPE rx_buffer[SERIAL5_RX_BUFFER_SIZE];
  58. static volatile uint8_t transmitting = 0;
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #if SERIAL5_TX_BUFFER_SIZE > 65535
  66. static volatile uint32_t tx_buffer_head = 0;
  67. static volatile uint32_t tx_buffer_tail = 0;
  68. #elif SERIAL5_TX_BUFFER_SIZE > 255
  69. static volatile uint16_t tx_buffer_head = 0;
  70. static volatile uint16_t tx_buffer_tail = 0;
  71. #else
  72. static volatile uint8_t tx_buffer_head = 0;
  73. static volatile uint8_t tx_buffer_tail = 0;
  74. #endif
  75. #if SERIAL5_RX_BUFFER_SIZE > 65535
  76. static volatile uint32_t rx_buffer_head = 0;
  77. static volatile uint32_t rx_buffer_tail = 0;
  78. #elif SERIAL5_RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. static uint8_t tx_pin_num = 33;
  86. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  87. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  88. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  89. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  90. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  91. #define C2_TX_INACTIVE C2_ENABLE
  92. // BITBAND Support
  93. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  94. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  95. #define C3_TXDIR_BIT 5
  96. void serial5_begin(uint32_t divisor)
  97. {
  98. SIM_SCGC1 |= SIM_SCGC1_UART4; // turn on clock, TODO: use bitband
  99. rx_buffer_head = 0;
  100. rx_buffer_tail = 0;
  101. tx_buffer_head = 0;
  102. tx_buffer_tail = 0;
  103. transmitting = 0;
  104. CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  105. CORE_PIN33_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  106. if (divisor < 32) divisor = 32;
  107. UART4_BDH = (divisor >> 13) & 0x1F;
  108. UART4_BDL = (divisor >> 5) & 0xFF;
  109. UART4_C4 = divisor & 0x1F;
  110. UART4_C1 = 0;
  111. UART4_PFIFO = 0;
  112. UART4_C2 = C2_TX_INACTIVE;
  113. NVIC_SET_PRIORITY(IRQ_UART4_STATUS, IRQ_PRIORITY);
  114. NVIC_ENABLE_IRQ(IRQ_UART4_STATUS);
  115. }
  116. void serial5_format(uint32_t format)
  117. {
  118. uint8_t c;
  119. c = UART4_C1;
  120. c = (c & ~0x13) | (format & 0x03); // configure parity
  121. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  122. UART4_C1 = c;
  123. if ((format & 0x0F) == 0x04) UART4_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  124. c = UART4_S2 & ~0x10;
  125. if (format & 0x10) c |= 0x10; // rx invert
  126. UART4_S2 = c;
  127. c = UART4_C3 & ~0x10;
  128. if (format & 0x20) c |= 0x10; // tx invert
  129. UART4_C3 = c;
  130. #ifdef SERIAL_9BIT_SUPPORT
  131. c = UART4_C4 & 0x1F;
  132. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  133. UART4_C4 = c;
  134. use9Bits = format & 0x80;
  135. #endif
  136. // For T3.5/T3.6 See about turning on 2 stop bit mode
  137. if ( format & 0x100) {
  138. uint8_t bdl = UART4_BDL;
  139. UART4_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  140. UART4_BDL = bdl; // Says BDH not acted on until BDL is written
  141. }
  142. // process request for half duplex.
  143. if ((format & SERIAL_HALF_DUPLEX) != 0) {
  144. UART4_C1 |= UART_C1_LOOPS | UART_C1_RSRC;
  145. volatile uint32_t *reg = portConfigRegister(tx_pin_num);
  146. *reg = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; // pullup on output pin;
  147. // Lets try to make use of bitband address to set the direction for ue...
  148. transmit_pin = (uint8_t*)GPIO_BITBAND_PTR(UART4_C3, C3_TXDIR_BIT);
  149. } else {
  150. if (transmit_pin == (uint8_t*)GPIO_BITBAND_PTR(UART4_C3, C3_TXDIR_BIT)) transmit_pin = NULL;
  151. }
  152. }
  153. void serial5_end(void)
  154. {
  155. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
  156. while (transmitting) yield(); // wait for buffered data to send
  157. NVIC_DISABLE_IRQ(IRQ_UART4_STATUS);
  158. UART4_C2 = 0;
  159. CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  160. CORE_PIN33_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  161. UART4_S1;
  162. UART4_D; // clear leftover error status
  163. rx_buffer_head = 0;
  164. rx_buffer_tail = 0;
  165. if (rts_pin) rts_deassert();
  166. }
  167. void serial5_set_transmit_pin(uint8_t pin)
  168. {
  169. while (transmitting) ;
  170. pinMode(pin, OUTPUT);
  171. digitalWrite(pin, LOW);
  172. transmit_pin = portOutputRegister(pin);
  173. }
  174. void serial5_set_tx(uint8_t pin, uint8_t opendrain)
  175. {
  176. uint32_t cfg;
  177. if (opendrain) pin |= 128;
  178. if (pin == tx_pin_num) return;
  179. if ((SIM_SCGC1 & SIM_SCGC1_UART4)) {
  180. switch (tx_pin_num & 127) {
  181. case 33: CORE_PIN33_CONFIG = 0; break; // PTE24
  182. }
  183. if (opendrain) {
  184. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  185. } else {
  186. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  187. }
  188. switch (pin & 127) {
  189. case 33: CORE_PIN33_CONFIG = cfg | PORT_PCR_MUX(3); break;
  190. }
  191. }
  192. tx_pin_num = pin;
  193. }
  194. void serial5_set_rx(uint8_t pin)
  195. {
  196. }
  197. int serial5_set_rts(uint8_t pin)
  198. {
  199. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
  200. if (pin < CORE_NUM_DIGITAL) {
  201. rts_pin = portOutputRegister(pin);
  202. pinMode(pin, OUTPUT);
  203. rts_assert();
  204. } else {
  205. rts_pin = NULL;
  206. return 0;
  207. }
  208. return 1;
  209. }
  210. int serial5_set_cts(uint8_t pin)
  211. {
  212. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
  213. if (pin == 24) {
  214. CORE_PIN24_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  215. } else {
  216. UART4_MODEM &= ~UART_MODEM_TXCTSE;
  217. return 0;
  218. }
  219. UART4_MODEM |= UART_MODEM_TXCTSE;
  220. return 1;
  221. }
  222. void serial5_putchar(uint32_t c)
  223. {
  224. uint32_t head, n;
  225. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
  226. if (transmit_pin) transmit_assert();
  227. head = tx_buffer_head;
  228. if (++head >= SERIAL5_TX_BUFFER_SIZE) head = 0;
  229. while (tx_buffer_tail == head) {
  230. int priority = nvic_execution_priority();
  231. if (priority <= IRQ_PRIORITY) {
  232. if ((UART4_S1 & UART_S1_TDRE)) {
  233. uint32_t tail = tx_buffer_tail;
  234. if (++tail >= SERIAL5_TX_BUFFER_SIZE) tail = 0;
  235. n = tx_buffer[tail];
  236. if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
  237. UART4_D = n;
  238. tx_buffer_tail = tail;
  239. }
  240. } else if (priority >= 256) {
  241. yield(); // wait
  242. }
  243. }
  244. tx_buffer[head] = c;
  245. transmitting = 1;
  246. tx_buffer_head = head;
  247. UART4_C2 = C2_TX_ACTIVE;
  248. }
  249. void serial5_write(const void *buf, unsigned int count)
  250. {
  251. const uint8_t *p = (const uint8_t *)buf;
  252. while (count-- > 0) serial5_putchar(*p++);
  253. }
  254. void serial5_flush(void)
  255. {
  256. while (transmitting) yield(); // wait
  257. }
  258. int serial5_write_buffer_free(void)
  259. {
  260. uint32_t head, tail;
  261. head = tx_buffer_head;
  262. tail = tx_buffer_tail;
  263. if (head >= tail) return SERIAL5_TX_BUFFER_SIZE - 1 - head + tail;
  264. return tail - head - 1;
  265. }
  266. int serial5_available(void)
  267. {
  268. uint32_t head, tail;
  269. head = rx_buffer_head;
  270. tail = rx_buffer_tail;
  271. if (head >= tail) return head - tail;
  272. return SERIAL5_RX_BUFFER_SIZE + head - tail;
  273. }
  274. int serial5_getchar(void)
  275. {
  276. uint32_t head, tail;
  277. int c;
  278. head = rx_buffer_head;
  279. tail = rx_buffer_tail;
  280. if (head == tail) return -1;
  281. if (++tail >= SERIAL5_RX_BUFFER_SIZE) tail = 0;
  282. c = rx_buffer[tail];
  283. rx_buffer_tail = tail;
  284. if (rts_pin) {
  285. int avail;
  286. if (head >= tail) avail = head - tail;
  287. else avail = SERIAL5_RX_BUFFER_SIZE + head - tail;
  288. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  289. }
  290. return c;
  291. }
  292. int serial5_peek(void)
  293. {
  294. uint32_t head, tail;
  295. head = rx_buffer_head;
  296. tail = rx_buffer_tail;
  297. if (head == tail) return -1;
  298. if (++tail >= SERIAL5_RX_BUFFER_SIZE) tail = 0;
  299. return rx_buffer[tail];
  300. }
  301. void serial5_clear(void)
  302. {
  303. rx_buffer_head = rx_buffer_tail;
  304. if (rts_pin) rts_assert();
  305. }
  306. // status interrupt combines
  307. // Transmit data below watermark UART_S1_TDRE
  308. // Transmit complete UART_S1_TC
  309. // Idle line UART_S1_IDLE
  310. // Receive data above watermark UART_S1_RDRF
  311. // LIN break detect UART_S2_LBKDIF
  312. // RxD pin active edge UART_S2_RXEDGIF
  313. void uart4_status_isr(void)
  314. {
  315. uint32_t head, tail, n;
  316. uint8_t c;
  317. if (UART4_S1 & UART_S1_RDRF) {
  318. if (use9Bits && (UART4_C3 & 0x80)) {
  319. n = UART4_D | 0x100;
  320. } else {
  321. n = UART4_D;
  322. }
  323. head = rx_buffer_head + 1;
  324. if (head >= SERIAL5_RX_BUFFER_SIZE) head = 0;
  325. if (head != rx_buffer_tail) {
  326. rx_buffer[head] = n;
  327. rx_buffer_head = head;
  328. }
  329. if (rts_pin) {
  330. int avail;
  331. tail = tx_buffer_tail;
  332. if (head >= tail) avail = head - tail;
  333. else avail = SERIAL5_RX_BUFFER_SIZE + head - tail;
  334. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  335. }
  336. }
  337. c = UART4_C2;
  338. if ((c & UART_C2_TIE) && (UART4_S1 & UART_S1_TDRE)) {
  339. head = tx_buffer_head;
  340. tail = tx_buffer_tail;
  341. if (head == tail) {
  342. UART4_C2 = C2_TX_COMPLETING;
  343. } else {
  344. if (++tail >= SERIAL5_TX_BUFFER_SIZE) tail = 0;
  345. n = tx_buffer[tail];
  346. if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
  347. UART4_D = n;
  348. tx_buffer_tail = tail;
  349. }
  350. }
  351. if ((c & UART_C2_TCIE) && (UART4_S1 & UART_S1_TC)) {
  352. transmitting = 0;
  353. if (transmit_pin) transmit_deassert();
  354. UART4_C2 = C2_TX_INACTIVE;
  355. }
  356. }
  357. #endif // HAS_KINETISK_UART4