Teensy 4.1 core updated for C++20
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

539 lines
15KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. #if defined(KINETISK)
  86. static uint8_t rx_pin_num = 9;
  87. static uint8_t tx_pin_num = 10;
  88. #endif
  89. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  90. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  91. #ifdef HAS_KINETISK_UART1_FIFO
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  93. #else
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  95. #endif
  96. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  97. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  98. #define C2_TX_INACTIVE C2_ENABLE
  99. void serial2_begin(uint32_t divisor)
  100. {
  101. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  102. rx_buffer_head = 0;
  103. rx_buffer_tail = 0;
  104. tx_buffer_head = 0;
  105. tx_buffer_tail = 0;
  106. transmitting = 0;
  107. #if defined(KINETISK)
  108. switch (rx_pin_num) {
  109. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  110. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. }
  112. switch (tx_pin_num) {
  113. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. }
  116. #elif defined(KINETISL)
  117. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  118. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  119. #endif
  120. #if defined(HAS_KINETISK_UART1)
  121. UART1_BDH = (divisor >> 13) & 0x1F;
  122. UART1_BDL = (divisor >> 5) & 0xFF;
  123. UART1_C4 = divisor & 0x1F;
  124. #ifdef HAS_KINETISK_UART1_FIFO
  125. UART1_C1 = UART_C1_ILT;
  126. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  127. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  128. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  129. #else
  130. UART1_C1 = 0;
  131. UART1_PFIFO = 0;
  132. #endif
  133. #elif defined(HAS_KINETISL_UART1)
  134. UART1_BDH = (divisor >> 8) & 0x1F;
  135. UART1_BDL = divisor & 0xFF;
  136. UART1_C1 = 0;
  137. #endif
  138. UART1_C2 = C2_TX_INACTIVE;
  139. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  140. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  141. }
  142. void serial2_format(uint32_t format)
  143. {
  144. uint8_t c;
  145. c = UART1_C1;
  146. c = (c & ~0x13) | (format & 0x03); // configure parity
  147. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  148. UART1_C1 = c;
  149. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  150. c = UART1_S2 & ~0x10;
  151. if (format & 0x10) c |= 0x10; // rx invert
  152. UART1_S2 = c;
  153. c = UART1_C3 & ~0x10;
  154. if (format & 0x20) c |= 0x10; // tx invert
  155. UART1_C3 = c;
  156. #ifdef SERIAL_9BIT_SUPPORT
  157. c = UART1_C4 & 0x1F;
  158. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  159. UART1_C4 = c;
  160. use9Bits = format & 0x80;
  161. #endif
  162. // UART1_C1.0 = parity, 0=even, 1=odd
  163. // UART1_C1.1 = parity, 0=disable, 1=enable
  164. // UART1_C1.4 = mode, 1=9bit, 0=8bit
  165. // UART1_C4.5 = mode, 1=10bit, 0=8bit
  166. // UART1_C3.4 = txinv, 0=normal, 1=inverted
  167. // UART1_S2.4 = rxinv, 0=normal, 1=inverted
  168. }
  169. void serial2_end(void)
  170. {
  171. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  172. while (transmitting) yield(); // wait for buffered data to send
  173. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  174. UART1_C2 = 0;
  175. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  176. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  177. rx_buffer_head = 0;
  178. rx_buffer_tail = 0;
  179. if (rts_pin) rts_deassert();
  180. }
  181. void serial2_set_transmit_pin(uint8_t pin)
  182. {
  183. while (transmitting) ;
  184. pinMode(pin, OUTPUT);
  185. digitalWrite(pin, LOW);
  186. transmit_pin = portOutputRegister(pin);
  187. #if defined(KINETISL)
  188. transmit_mask = digitalPinToBitMask(pin);
  189. #endif
  190. }
  191. void serial2_set_tx(uint8_t pin)
  192. {
  193. #if defined(KINETISK)
  194. if (pin == tx_pin_num) return;
  195. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  196. switch (tx_pin_num) {
  197. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  198. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  199. }
  200. switch (pin) {
  201. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  202. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  203. }
  204. }
  205. tx_pin_num = pin;
  206. #endif
  207. }
  208. void serial2_set_rx(uint8_t pin)
  209. {
  210. #if defined(KINETISK)
  211. if (pin == rx_pin_num) return;
  212. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  213. switch (rx_pin_num) {
  214. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  215. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  216. }
  217. switch (pin) {
  218. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  219. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  220. }
  221. }
  222. rx_pin_num = pin;
  223. #endif
  224. }
  225. int serial2_set_rts(uint8_t pin)
  226. {
  227. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  228. if (pin < CORE_NUM_DIGITAL) {
  229. rts_pin = portOutputRegister(pin);
  230. #if defined(KINETISL)
  231. rts_mask = digitalPinToBitMask(pin);
  232. #endif
  233. pinMode(pin, OUTPUT);
  234. rts_assert();
  235. } else {
  236. rts_pin = NULL;
  237. return 0;
  238. }
  239. /*
  240. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  241. if (pin == 22) {
  242. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  243. } else {
  244. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  245. return 0;
  246. }
  247. UART1_MODEM |= UART_MODEM_RXRTSE;
  248. */
  249. return 1;
  250. }
  251. int serial2_set_cts(uint8_t pin)
  252. {
  253. #if defined(KINETISK)
  254. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  255. if (pin == 23) {
  256. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  257. } else {
  258. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  259. return 0;
  260. }
  261. UART1_MODEM |= UART_MODEM_TXCTSE;
  262. return 1;
  263. #else
  264. return 0;
  265. #endif
  266. }
  267. void serial2_putchar(uint32_t c)
  268. {
  269. uint32_t head, n;
  270. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  271. if (transmit_pin) transmit_assert();
  272. head = tx_buffer_head;
  273. if (++head >= TX_BUFFER_SIZE) head = 0;
  274. while (tx_buffer_tail == head) {
  275. int priority = nvic_execution_priority();
  276. if (priority <= IRQ_PRIORITY) {
  277. if ((UART1_S1 & UART_S1_TDRE)) {
  278. uint32_t tail = tx_buffer_tail;
  279. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  280. n = tx_buffer[tail];
  281. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  282. UART1_D = n;
  283. tx_buffer_tail = tail;
  284. }
  285. } else if (priority >= 256) {
  286. yield(); // wait
  287. }
  288. }
  289. tx_buffer[head] = c;
  290. transmitting = 1;
  291. tx_buffer_head = head;
  292. UART1_C2 = C2_TX_ACTIVE;
  293. }
  294. #ifdef HAS_KINETISK_UART1_FIFO
  295. void serial2_write(const void *buf, unsigned int count)
  296. {
  297. const uint8_t *p = (const uint8_t *)buf;
  298. const uint8_t *end = p + count;
  299. uint32_t head, n;
  300. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  301. if (transmit_pin) transmit_assert();
  302. while (p < end) {
  303. head = tx_buffer_head;
  304. if (++head >= TX_BUFFER_SIZE) head = 0;
  305. if (tx_buffer_tail == head) {
  306. UART1_C2 = C2_TX_ACTIVE;
  307. do {
  308. int priority = nvic_execution_priority();
  309. if (priority <= IRQ_PRIORITY) {
  310. if ((UART1_S1 & UART_S1_TDRE)) {
  311. uint32_t tail = tx_buffer_tail;
  312. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  313. n = tx_buffer[tail];
  314. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  315. UART1_D = n;
  316. tx_buffer_tail = tail;
  317. }
  318. } else if (priority >= 256) {
  319. yield();
  320. }
  321. } while (tx_buffer_tail == head);
  322. }
  323. tx_buffer[head] = *p++;
  324. transmitting = 1;
  325. tx_buffer_head = head;
  326. }
  327. UART1_C2 = C2_TX_ACTIVE;
  328. }
  329. #else
  330. void serial2_write(const void *buf, unsigned int count)
  331. {
  332. const uint8_t *p = (const uint8_t *)buf;
  333. while (count-- > 0) serial2_putchar(*p++);
  334. }
  335. #endif
  336. void serial2_flush(void)
  337. {
  338. while (transmitting) yield(); // wait
  339. }
  340. int serial2_write_buffer_free(void)
  341. {
  342. uint32_t head, tail;
  343. head = tx_buffer_head;
  344. tail = tx_buffer_tail;
  345. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  346. return tail - head - 1;
  347. }
  348. int serial2_available(void)
  349. {
  350. uint32_t head, tail;
  351. head = rx_buffer_head;
  352. tail = rx_buffer_tail;
  353. if (head >= tail) return head - tail;
  354. return RX_BUFFER_SIZE + head - tail;
  355. }
  356. int serial2_getchar(void)
  357. {
  358. uint32_t head, tail;
  359. int c;
  360. head = rx_buffer_head;
  361. tail = rx_buffer_tail;
  362. if (head == tail) return -1;
  363. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  364. c = rx_buffer[tail];
  365. rx_buffer_tail = tail;
  366. if (rts_pin) {
  367. int avail;
  368. if (head >= tail) avail = head - tail;
  369. else avail = RX_BUFFER_SIZE + head - tail;
  370. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  371. }
  372. return c;
  373. }
  374. int serial2_peek(void)
  375. {
  376. uint32_t head, tail;
  377. head = rx_buffer_head;
  378. tail = rx_buffer_tail;
  379. if (head == tail) return -1;
  380. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  381. return rx_buffer[tail];
  382. }
  383. void serial2_clear(void)
  384. {
  385. #ifdef HAS_KINETISK_UART1_FIFO
  386. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  387. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  388. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  389. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  390. #endif
  391. rx_buffer_head = rx_buffer_tail;
  392. if (rts_pin) rts_assert();
  393. }
  394. // status interrupt combines
  395. // Transmit data below watermark UART_S1_TDRE
  396. // Transmit complete UART_S1_TC
  397. // Idle line UART_S1_IDLE
  398. // Receive data above watermark UART_S1_RDRF
  399. // LIN break detect UART_S2_LBKDIF
  400. // RxD pin active edge UART_S2_RXEDGIF
  401. void uart1_status_isr(void)
  402. {
  403. uint32_t head, tail, n;
  404. uint8_t c;
  405. #ifdef HAS_KINETISK_UART1_FIFO
  406. uint32_t newhead;
  407. uint8_t avail;
  408. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  409. __disable_irq();
  410. avail = UART1_RCFIFO;
  411. if (avail == 0) {
  412. // The only way to clear the IDLE interrupt flag is
  413. // to read the data register. But reading with no
  414. // data causes a FIFO underrun, which causes the
  415. // FIFO to return corrupted data. If anyone from
  416. // Freescale reads this, what a poor design! There
  417. // write should be a write-1-to-clear for IDLE.
  418. c = UART1_D;
  419. // flushing the fifo recovers from the underrun,
  420. // but there's a possible race condition where a
  421. // new character could be received between reading
  422. // RCFIFO == 0 and flushing the FIFO. To minimize
  423. // the chance, interrupts are disabled so a higher
  424. // priority interrupt (hopefully) doesn't delay.
  425. // TODO: change this to disabling the IDLE interrupt
  426. // which won't be simple, since we already manage
  427. // which transmit interrupts are enabled.
  428. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  429. __enable_irq();
  430. } else {
  431. __enable_irq();
  432. head = rx_buffer_head;
  433. tail = rx_buffer_tail;
  434. do {
  435. if (use9Bits && (UART1_C3 & 0x80)) {
  436. n = UART1_D | 0x100;
  437. } else {
  438. n = UART1_D;
  439. }
  440. newhead = head + 1;
  441. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  442. if (newhead != tail) {
  443. head = newhead;
  444. rx_buffer[head] = n;
  445. }
  446. } while (--avail > 0);
  447. rx_buffer_head = head;
  448. if (rts_pin) {
  449. int avail;
  450. if (head >= tail) avail = head - tail;
  451. else avail = RX_BUFFER_SIZE + head - tail;
  452. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  453. }
  454. }
  455. }
  456. c = UART1_C2;
  457. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  458. head = tx_buffer_head;
  459. tail = tx_buffer_tail;
  460. do {
  461. if (tail == head) break;
  462. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  463. avail = UART1_S1;
  464. n = tx_buffer[tail];
  465. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  466. UART1_D = n;
  467. } while (UART1_TCFIFO < 8);
  468. tx_buffer_tail = tail;
  469. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  470. }
  471. #else
  472. if (UART1_S1 & UART_S1_RDRF) {
  473. n = UART1_D;
  474. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  475. head = rx_buffer_head + 1;
  476. if (head >= RX_BUFFER_SIZE) head = 0;
  477. if (head != rx_buffer_tail) {
  478. rx_buffer[head] = n;
  479. rx_buffer_head = head;
  480. }
  481. }
  482. c = UART1_C2;
  483. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  484. head = tx_buffer_head;
  485. tail = tx_buffer_tail;
  486. if (head == tail) {
  487. UART1_C2 = C2_TX_COMPLETING;
  488. } else {
  489. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  490. n = tx_buffer[tail];
  491. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  492. UART1_D = n;
  493. tx_buffer_tail = tail;
  494. }
  495. }
  496. #endif
  497. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  498. transmitting = 0;
  499. if (transmit_pin) transmit_deassert();
  500. UART1_C2 = C2_TX_INACTIVE;
  501. }
  502. }