Teensy 4.1 core updated for C++20
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

1338 行
42KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. {GPIO_BITBAND_PTR(CORE_PIN58_PORTREG, CORE_PIN58_BIT), &CORE_PIN58_CONFIG},
  99. {GPIO_BITBAND_PTR(CORE_PIN59_PORTREG, CORE_PIN59_BIT), &CORE_PIN59_CONFIG},
  100. {GPIO_BITBAND_PTR(CORE_PIN60_PORTREG, CORE_PIN60_BIT), &CORE_PIN60_CONFIG},
  101. {GPIO_BITBAND_PTR(CORE_PIN61_PORTREG, CORE_PIN61_BIT), &CORE_PIN61_CONFIG},
  102. {GPIO_BITBAND_PTR(CORE_PIN62_PORTREG, CORE_PIN62_BIT), &CORE_PIN62_CONFIG},
  103. {GPIO_BITBAND_PTR(CORE_PIN63_PORTREG, CORE_PIN63_BIT), &CORE_PIN63_CONFIG},
  104. #endif
  105. };
  106. #elif defined(KINETISL)
  107. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  108. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  109. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  110. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  129. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  130. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  131. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  132. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  133. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  134. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  135. };
  136. #endif
  137. static void dummy_isr() {};
  138. typedef void (*voidFuncPtr)(void);
  139. #if defined(KINETISK)
  140. #ifdef NO_PORT_ISR_FASTRUN
  141. static void port_A_isr(void);
  142. static void port_B_isr(void);
  143. static void port_C_isr(void);
  144. static void port_D_isr(void);
  145. static void port_E_isr(void);
  146. #else
  147. static void port_A_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  148. static void port_B_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  149. static void port_C_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  150. static void port_D_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  151. static void port_E_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  152. #endif
  153. voidFuncPtr isr_table_portA[CORE_MAX_PIN_PORTA+1] = { [0 ... CORE_MAX_PIN_PORTA] = dummy_isr };
  154. voidFuncPtr isr_table_portB[CORE_MAX_PIN_PORTB+1] = { [0 ... CORE_MAX_PIN_PORTB] = dummy_isr };
  155. voidFuncPtr isr_table_portC[CORE_MAX_PIN_PORTC+1] = { [0 ... CORE_MAX_PIN_PORTC] = dummy_isr };
  156. voidFuncPtr isr_table_portD[CORE_MAX_PIN_PORTD+1] = { [0 ... CORE_MAX_PIN_PORTD] = dummy_isr };
  157. voidFuncPtr isr_table_portE[CORE_MAX_PIN_PORTE+1] = { [0 ... CORE_MAX_PIN_PORTE] = dummy_isr };
  158. // The Pin Config Register is used to look up the correct interrupt table
  159. // for the corresponding port.
  160. inline voidFuncPtr* getIsrTable(volatile uint32_t *config) {
  161. voidFuncPtr* isr_table = NULL;
  162. if(&PORTA_PCR0 <= config && config <= &PORTA_PCR31) isr_table = isr_table_portA;
  163. else if(&PORTB_PCR0 <= config && config <= &PORTB_PCR31) isr_table = isr_table_portB;
  164. else if(&PORTC_PCR0 <= config && config <= &PORTC_PCR31) isr_table = isr_table_portC;
  165. else if(&PORTD_PCR0 <= config && config <= &PORTD_PCR31) isr_table = isr_table_portD;
  166. else if(&PORTE_PCR0 <= config && config <= &PORTE_PCR31) isr_table = isr_table_portE;
  167. return isr_table;
  168. }
  169. inline uint32_t getPinIndex(volatile uint32_t *config) {
  170. uintptr_t v = (uintptr_t) config;
  171. // There are 32 pin config registers for each port, each port starting at a round address.
  172. // They are spaced 4 bytes apart.
  173. return (v % 128) / 4;
  174. }
  175. #elif defined(KINETISL)
  176. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL] = { [0 ... CORE_NUM_DIGITAL-1] = dummy_isr };
  177. static void porta_interrupt(void);
  178. static void portcd_interrupt(void);
  179. #endif
  180. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  181. {
  182. _VectorsRam[irq + 16] = function;
  183. }
  184. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  185. {
  186. volatile uint32_t *config;
  187. uint32_t cfg, mask;
  188. if (pin >= CORE_NUM_DIGITAL) return;
  189. switch (mode) {
  190. case CHANGE: mask = 0x0B; break;
  191. case RISING: mask = 0x09; break;
  192. case FALLING: mask = 0x0A; break;
  193. case LOW: mask = 0x08; break;
  194. case HIGH: mask = 0x0C; break;
  195. default: return;
  196. }
  197. mask = (mask << 16) | 0x01000000;
  198. config = portConfigRegister(pin);
  199. if ((*config & 0x00000700) == 0) {
  200. // for compatibility with programs which depend
  201. // on AVR hardware default to input mode.
  202. pinMode(pin, INPUT);
  203. }
  204. #if defined(KINETISK)
  205. attachInterruptVector(IRQ_PORTA, port_A_isr);
  206. attachInterruptVector(IRQ_PORTB, port_B_isr);
  207. attachInterruptVector(IRQ_PORTC, port_C_isr);
  208. attachInterruptVector(IRQ_PORTD, port_D_isr);
  209. attachInterruptVector(IRQ_PORTE, port_E_isr);
  210. voidFuncPtr* isr_table = getIsrTable(config);
  211. if(!isr_table) return;
  212. uint32_t pin_index = getPinIndex(config);
  213. __disable_irq();
  214. cfg = *config;
  215. cfg &= ~0x000F0000; // disable any previous interrupt
  216. *config = cfg;
  217. isr_table[pin_index] = function; // set the function pointer
  218. cfg |= mask;
  219. *config = cfg; // enable the new interrupt
  220. __enable_irq();
  221. #elif defined(KINETISL)
  222. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  223. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  224. __disable_irq();
  225. cfg = *config;
  226. cfg &= ~0x000F0000; // disable any previous interrupt
  227. *config = cfg;
  228. intFunc[pin] = function; // set the function pointer
  229. cfg |= mask;
  230. *config = cfg; // enable the new interrupt
  231. __enable_irq();
  232. #endif
  233. }
  234. void detachInterrupt(uint8_t pin)
  235. {
  236. volatile uint32_t *config;
  237. config = portConfigRegister(pin);
  238. #if defined(KINETISK)
  239. voidFuncPtr* isr_table = getIsrTable(config);
  240. if(!isr_table) return;
  241. uint32_t pin_index = getPinIndex(config);
  242. __disable_irq();
  243. *config = ((*config & ~0x000F0000) | 0x01000000);
  244. isr_table[pin_index] = dummy_isr;
  245. __enable_irq();
  246. #elif defined(KINETISL)
  247. __disable_irq();
  248. *config = ((*config & ~0x000F0000) | 0x01000000);
  249. intFunc[pin] = dummy_isr;
  250. __enable_irq();
  251. #endif
  252. }
  253. typedef void (*voidFuncPtr)(void);
  254. // Using CTZ instead of CLZ is faster, since it allows more efficient bit
  255. // clearing and fast indexing into the pin ISR table.
  256. #define PORT_ISR_FUNCTION_CLZ(port_name) \
  257. static void port_ ## port_name ## _isr(void) { \
  258. uint32_t isfr = PORT ## port_name ##_ISFR; \
  259. PORT ## port_name ##_ISFR = isfr; \
  260. voidFuncPtr* isr_table = isr_table_port ## port_name; \
  261. uint32_t bit_nr; \
  262. while(isfr) { \
  263. bit_nr = __builtin_ctz(isfr); \
  264. isr_table[bit_nr](); \
  265. isfr = isfr & (isfr-1); \
  266. if(!isfr) return; \
  267. } \
  268. }
  269. // END PORT_ISR_FUNCTION_CLZ
  270. #if defined(KINETISK)
  271. PORT_ISR_FUNCTION_CLZ(A)
  272. PORT_ISR_FUNCTION_CLZ(B)
  273. PORT_ISR_FUNCTION_CLZ(C)
  274. PORT_ISR_FUNCTION_CLZ(D)
  275. PORT_ISR_FUNCTION_CLZ(E)
  276. #elif defined(KINETISL)
  277. // Kinetis L (Teensy LC) is based on Cortex M0 and doesn't have hardware
  278. // support for CLZ.
  279. #define DISPATCH_PIN_ISR(pin_nr) { voidFuncPtr pin_isr = intFunc[pin_nr]; \
  280. if(isfr & CORE_PIN ## pin_nr ## _BITMASK) pin_isr(); }
  281. static void porta_interrupt(void)
  282. {
  283. uint32_t isfr = PORTA_ISFR;
  284. PORTA_ISFR = isfr;
  285. DISPATCH_PIN_ISR(3);
  286. DISPATCH_PIN_ISR(4);
  287. }
  288. static void portcd_interrupt(void)
  289. {
  290. uint32_t isfr = PORTC_ISFR;
  291. PORTC_ISFR = isfr;
  292. DISPATCH_PIN_ISR(9);
  293. DISPATCH_PIN_ISR(10);
  294. DISPATCH_PIN_ISR(11);
  295. DISPATCH_PIN_ISR(12);
  296. DISPATCH_PIN_ISR(13);
  297. DISPATCH_PIN_ISR(15);
  298. DISPATCH_PIN_ISR(22);
  299. DISPATCH_PIN_ISR(23);
  300. isfr = PORTD_ISFR;
  301. PORTD_ISFR = isfr;
  302. DISPATCH_PIN_ISR(2);
  303. DISPATCH_PIN_ISR(5);
  304. DISPATCH_PIN_ISR(6);
  305. DISPATCH_PIN_ISR(7);
  306. DISPATCH_PIN_ISR(8);
  307. DISPATCH_PIN_ISR(14);
  308. DISPATCH_PIN_ISR(20);
  309. DISPATCH_PIN_ISR(21);
  310. }
  311. #undef DISPATCH_PIN_ISR
  312. #endif
  313. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  314. unsigned long rtc_get(void)
  315. {
  316. return RTC_TSR;
  317. }
  318. void rtc_set(unsigned long t)
  319. {
  320. RTC_SR = 0;
  321. RTC_TPR = 0;
  322. RTC_TSR = t;
  323. RTC_SR = RTC_SR_TCE;
  324. }
  325. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  326. // For example, adjust = -100 is slows the clock by 11.92 ppm
  327. //
  328. void rtc_compensate(int adjust)
  329. {
  330. uint32_t comp, interval, tcr;
  331. // This simple approach tries to maximize the interval.
  332. // Perhaps minimizing TCR would be better, so the
  333. // compensation is distributed more evenly across
  334. // many seconds, rather than saving it all up and then
  335. // altering one second up to +/- 0.38%
  336. if (adjust >= 0) {
  337. comp = adjust;
  338. interval = 256;
  339. while (1) {
  340. tcr = comp * interval;
  341. if (tcr < 128*256) break;
  342. if (--interval == 1) break;
  343. }
  344. tcr = tcr >> 8;
  345. } else {
  346. comp = -adjust;
  347. interval = 256;
  348. while (1) {
  349. tcr = comp * interval;
  350. if (tcr < 129*256) break;
  351. if (--interval == 1) break;
  352. }
  353. tcr = tcr >> 8;
  354. tcr = 256 - tcr;
  355. }
  356. RTC_TCR = ((interval - 1) << 8) | tcr;
  357. }
  358. #else
  359. unsigned long rtc_get(void) { return 0; }
  360. void rtc_set(unsigned long t) { }
  361. void rtc_compensate(int adjust) { }
  362. #endif
  363. #if 0
  364. // TODO: build system should define this
  365. // so RTC is automatically initialized to approx correct time
  366. // at least when the program begins running right after upload
  367. #ifndef TIME_T
  368. #define TIME_T 1350160272
  369. #endif
  370. void init_rtc(void)
  371. {
  372. serial_print("init_rtc\n");
  373. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  374. // enable the RTC crystal oscillator, for approx 12pf crystal
  375. if (!(RTC_CR & RTC_CR_OSCE)) {
  376. serial_print("start RTC oscillator\n");
  377. RTC_SR = 0;
  378. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  379. }
  380. // should wait for crystal to stabilize.....
  381. serial_print("SR=");
  382. serial_phex32(RTC_SR);
  383. serial_print("\n");
  384. serial_print("CR=");
  385. serial_phex32(RTC_CR);
  386. serial_print("\n");
  387. serial_print("TSR=");
  388. serial_phex32(RTC_TSR);
  389. serial_print("\n");
  390. serial_print("TCR=");
  391. serial_phex32(RTC_TCR);
  392. serial_print("\n");
  393. if (RTC_SR & RTC_SR_TIF) {
  394. // enable the RTC
  395. RTC_SR = 0;
  396. RTC_TPR = 0;
  397. RTC_TSR = TIME_T;
  398. RTC_SR = RTC_SR_TCE;
  399. }
  400. }
  401. #endif
  402. extern void usb_init(void);
  403. // create a default PWM at the same 488.28 Hz as Arduino Uno
  404. #if defined(KINETISK)
  405. #define F_TIMER F_BUS
  406. #elif defined(KINETISL)
  407. #if F_CPU > 16000000
  408. #define F_TIMER (F_PLL/2)
  409. #else
  410. #define F_TIMER (F_PLL)
  411. #endif//Low Power
  412. #endif
  413. #if F_TIMER == 120000000
  414. #define DEFAULT_FTM_MOD (61440 - 1)
  415. #define DEFAULT_FTM_PRESCALE 2
  416. #elif F_TIMER == 108000000
  417. #define DEFAULT_FTM_MOD (55296 - 1)
  418. #define DEFAULT_FTM_PRESCALE 2
  419. #elif F_TIMER == 96000000
  420. #define DEFAULT_FTM_MOD (49152 - 1)
  421. #define DEFAULT_FTM_PRESCALE 2
  422. #elif F_TIMER == 90000000
  423. #define DEFAULT_FTM_MOD (46080 - 1)
  424. #define DEFAULT_FTM_PRESCALE 2
  425. #elif F_TIMER == 80000000
  426. #define DEFAULT_FTM_MOD (40960 - 1)
  427. #define DEFAULT_FTM_PRESCALE 2
  428. #elif F_TIMER == 72000000
  429. #define DEFAULT_FTM_MOD (36864 - 1)
  430. #define DEFAULT_FTM_PRESCALE 2
  431. #elif F_TIMER == 64000000
  432. #define DEFAULT_FTM_MOD (65536 - 1)
  433. #define DEFAULT_FTM_PRESCALE 1
  434. #elif F_TIMER == 60000000
  435. #define DEFAULT_FTM_MOD (61440 - 1)
  436. #define DEFAULT_FTM_PRESCALE 1
  437. #elif F_TIMER == 56000000
  438. #define DEFAULT_FTM_MOD (57344 - 1)
  439. #define DEFAULT_FTM_PRESCALE 1
  440. #elif F_TIMER == 54000000
  441. #define DEFAULT_FTM_MOD (55296 - 1)
  442. #define DEFAULT_FTM_PRESCALE 1
  443. #elif F_TIMER == 48000000
  444. #define DEFAULT_FTM_MOD (49152 - 1)
  445. #define DEFAULT_FTM_PRESCALE 1
  446. #elif F_TIMER == 40000000
  447. #define DEFAULT_FTM_MOD (40960 - 1)
  448. #define DEFAULT_FTM_PRESCALE 1
  449. #elif F_TIMER == 36000000
  450. #define DEFAULT_FTM_MOD (36864 - 1)
  451. #define DEFAULT_FTM_PRESCALE 1
  452. #elif F_TIMER == 24000000
  453. #define DEFAULT_FTM_MOD (49152 - 1)
  454. #define DEFAULT_FTM_PRESCALE 0
  455. #elif F_TIMER == 16000000
  456. #define DEFAULT_FTM_MOD (32768 - 1)
  457. #define DEFAULT_FTM_PRESCALE 0
  458. #elif F_TIMER == 8000000
  459. #define DEFAULT_FTM_MOD (16384 - 1)
  460. #define DEFAULT_FTM_PRESCALE 0
  461. #elif F_TIMER == 4000000
  462. #define DEFAULT_FTM_MOD (8192 - 1)
  463. #define DEFAULT_FTM_PRESCALE 0
  464. #elif F_TIMER == 2000000
  465. #define DEFAULT_FTM_MOD (4096 - 1)
  466. #define DEFAULT_FTM_PRESCALE 0
  467. #endif
  468. //void init_pins(void)
  469. __attribute__((noinline))
  470. void _init_Teensyduino_internal_(void)
  471. {
  472. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  473. NVIC_ENABLE_IRQ(IRQ_PORTA);
  474. NVIC_ENABLE_IRQ(IRQ_PORTB);
  475. NVIC_ENABLE_IRQ(IRQ_PORTC);
  476. NVIC_ENABLE_IRQ(IRQ_PORTD);
  477. NVIC_ENABLE_IRQ(IRQ_PORTE);
  478. #elif defined(__MKL26Z64__)
  479. NVIC_ENABLE_IRQ(IRQ_PORTA);
  480. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  481. #endif
  482. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  483. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  484. FTM0_CNT = 0;
  485. FTM0_MOD = DEFAULT_FTM_MOD;
  486. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  487. FTM0_C1SC = 0x28;
  488. FTM0_C2SC = 0x28;
  489. FTM0_C3SC = 0x28;
  490. FTM0_C4SC = 0x28;
  491. FTM0_C5SC = 0x28;
  492. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  493. FTM0_C6SC = 0x28;
  494. FTM0_C7SC = 0x28;
  495. #endif
  496. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  497. FTM3_C0SC = 0x28;
  498. FTM3_C1SC = 0x28;
  499. FTM3_C2SC = 0x28;
  500. FTM3_C3SC = 0x28;
  501. FTM3_C4SC = 0x28;
  502. FTM3_C5SC = 0x28;
  503. FTM3_C6SC = 0x28;
  504. FTM3_C7SC = 0x28;
  505. #endif
  506. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  507. FTM1_CNT = 0;
  508. FTM1_MOD = DEFAULT_FTM_MOD;
  509. FTM1_C0SC = 0x28;
  510. FTM1_C1SC = 0x28;
  511. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  512. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  513. FTM2_CNT = 0;
  514. FTM2_MOD = DEFAULT_FTM_MOD;
  515. FTM2_C0SC = 0x28;
  516. FTM2_C1SC = 0x28;
  517. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  518. #endif
  519. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  520. FTM3_CNT = 0;
  521. FTM3_MOD = DEFAULT_FTM_MOD;
  522. FTM3_C0SC = 0x28;
  523. FTM3_C1SC = 0x28;
  524. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  525. #endif
  526. #if defined(__MK66FX1M0__)
  527. SIM_SCGC2 |= SIM_SCGC2_TPM1;
  528. SIM_SOPT2 |= SIM_SOPT2_TPMSRC(2);
  529. TPM1_CNT = 0;
  530. TPM1_MOD = 32767;
  531. TPM1_C0SC = 0x28;
  532. TPM1_C1SC = 0x28;
  533. TPM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0);
  534. #endif
  535. analog_init();
  536. // for background about this startup delay, please see these conversations
  537. // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
  538. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  539. delay(50);
  540. usb_init();
  541. delay(350);
  542. }
  543. #if defined(__MK20DX128__)
  544. #define FTM0_CH0_PIN 22
  545. #define FTM0_CH1_PIN 23
  546. #define FTM0_CH2_PIN 9
  547. #define FTM0_CH3_PIN 10
  548. #define FTM0_CH4_PIN 6
  549. #define FTM0_CH5_PIN 20
  550. #define FTM0_CH6_PIN 21
  551. #define FTM0_CH7_PIN 5
  552. #define FTM1_CH0_PIN 3
  553. #define FTM1_CH1_PIN 4
  554. #elif defined(__MK20DX256__)
  555. #define FTM0_CH0_PIN 22
  556. #define FTM0_CH1_PIN 23
  557. #define FTM0_CH2_PIN 9
  558. #define FTM0_CH3_PIN 10
  559. #define FTM0_CH4_PIN 6
  560. #define FTM0_CH5_PIN 20
  561. #define FTM0_CH6_PIN 21
  562. #define FTM0_CH7_PIN 5
  563. #define FTM1_CH0_PIN 3
  564. #define FTM1_CH1_PIN 4
  565. #define FTM2_CH0_PIN 32
  566. #define FTM2_CH1_PIN 25
  567. #elif defined(__MKL26Z64__)
  568. #define FTM0_CH0_PIN 22
  569. #define FTM0_CH1_PIN 23
  570. #define FTM0_CH2_PIN 9
  571. #define FTM0_CH3_PIN 10
  572. #define FTM0_CH4_PIN 6
  573. #define FTM0_CH5_PIN 20
  574. #define FTM1_CH0_PIN 16
  575. #define FTM1_CH1_PIN 17
  576. #define FTM2_CH0_PIN 3
  577. #define FTM2_CH1_PIN 4
  578. #elif defined(__MK64FX512__)
  579. #define FTM0_CH0_PIN 22
  580. #define FTM0_CH1_PIN 23
  581. #define FTM0_CH2_PIN 9
  582. #define FTM0_CH3_PIN 10
  583. #define FTM0_CH4_PIN 6
  584. #define FTM0_CH5_PIN 20
  585. #define FTM0_CH6_PIN 21
  586. #define FTM0_CH7_PIN 5
  587. #define FTM1_CH0_PIN 3
  588. #define FTM1_CH1_PIN 4
  589. #define FTM2_CH0_PIN 29
  590. #define FTM2_CH1_PIN 30
  591. #define FTM3_CH0_PIN 2
  592. #define FTM3_CH1_PIN 14
  593. #define FTM3_CH2_PIN 7
  594. #define FTM3_CH3_PIN 8
  595. #define FTM3_CH4_PIN 35
  596. #define FTM3_CH5_PIN 36
  597. #define FTM3_CH6_PIN 37
  598. #define FTM3_CH7_PIN 38
  599. #elif defined(__MK66FX1M0__)
  600. #define FTM0_CH0_PIN 22
  601. #define FTM0_CH1_PIN 23
  602. #define FTM0_CH2_PIN 9
  603. #define FTM0_CH3_PIN 10
  604. #define FTM0_CH4_PIN 6
  605. #define FTM0_CH5_PIN 20
  606. #define FTM0_CH6_PIN 21
  607. #define FTM0_CH7_PIN 5
  608. #define FTM1_CH0_PIN 3
  609. #define FTM1_CH1_PIN 4
  610. #define FTM2_CH0_PIN 29
  611. #define FTM2_CH1_PIN 30
  612. #define FTM3_CH0_PIN 2
  613. #define FTM3_CH1_PIN 14
  614. #define FTM3_CH2_PIN 7
  615. #define FTM3_CH3_PIN 8
  616. #define FTM3_CH4_PIN 35
  617. #define FTM3_CH5_PIN 36
  618. #define FTM3_CH6_PIN 37
  619. #define FTM3_CH7_PIN 38
  620. #define TPM1_CH0_PIN 16
  621. #define TPM1_CH1_PIN 17
  622. #endif
  623. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  624. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  625. static uint8_t analog_write_res = 8;
  626. // SOPT4 is SIM select clocks?
  627. // FTM is clocked by the bus clock, either 24 or 48 MHz
  628. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  629. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  630. void analogWrite(uint8_t pin, int val)
  631. {
  632. uint32_t cval, max;
  633. #if defined(__MK20DX256__)
  634. if (pin == A14) {
  635. uint8_t res = analog_write_res;
  636. if (res < 12) {
  637. val <<= 12 - res;
  638. } else if (res > 12) {
  639. val >>= res - 12;
  640. }
  641. analogWriteDAC0(val);
  642. return;
  643. }
  644. #elif defined(__MKL26Z64__)
  645. if (pin == A12) {
  646. uint8_t res = analog_write_res;
  647. if (res < 12) {
  648. val <<= 12 - res;
  649. } else if (res > 12) {
  650. val >>= res - 12;
  651. }
  652. analogWriteDAC0(val);
  653. return;
  654. }
  655. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  656. if (pin == A21 || pin == A22) {
  657. uint8_t res = analog_write_res;
  658. if (res < 12) {
  659. val <<= 12 - res;
  660. } else if (res > 12) {
  661. val >>= res - 12;
  662. }
  663. if (pin == A21) analogWriteDAC0(val);
  664. else analogWriteDAC1(val);
  665. return;
  666. }
  667. #endif
  668. max = 1 << analog_write_res;
  669. if (val <= 0) {
  670. digitalWrite(pin, LOW);
  671. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  672. return;
  673. } else if (val >= max) {
  674. digitalWrite(pin, HIGH);
  675. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  676. return;
  677. }
  678. //serial_print("analogWrite\n");
  679. //serial_print("val = ");
  680. //serial_phex32(val);
  681. //serial_print("\n");
  682. //serial_print("analog_write_res = ");
  683. //serial_phex(analog_write_res);
  684. //serial_print("\n");
  685. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  686. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  687. #if defined(FTM2_CH0_PIN)
  688. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  689. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  690. #endif
  691. #if defined(FTM3_CH0_PIN)
  692. } else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN || pin == FTM3_CH2_PIN
  693. || pin == FTM3_CH3_PIN || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  694. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  695. cval = ((uint32_t)val * (uint32_t)(FTM3_MOD + 1)) >> analog_write_res;
  696. #endif
  697. #if defined(TPM1_CH0_PIN)
  698. } else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  699. cval = ((uint32_t)val * (uint32_t)(TPM1_MOD + 1)) >> analog_write_res;
  700. #endif
  701. } else {
  702. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  703. }
  704. //serial_print("cval = ");
  705. //serial_phex32(cval);
  706. //serial_print("\n");
  707. switch (pin) {
  708. #ifdef FTM0_CH0_PIN
  709. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  710. FTM0_C0V = cval;
  711. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  712. break;
  713. #endif
  714. #ifdef FTM0_CH1_PIN
  715. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  716. FTM0_C1V = cval;
  717. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  718. break;
  719. #endif
  720. #ifdef FTM0_CH2_PIN
  721. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  722. FTM0_C2V = cval;
  723. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  724. break;
  725. #endif
  726. #ifdef FTM0_CH3_PIN
  727. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  728. FTM0_C3V = cval;
  729. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  730. break;
  731. #endif
  732. #ifdef FTM0_CH4_PIN
  733. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  734. FTM0_C4V = cval;
  735. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  736. break;
  737. #endif
  738. #ifdef FTM0_CH5_PIN
  739. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  740. FTM0_C5V = cval;
  741. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  742. break;
  743. #endif
  744. #ifdef FTM0_CH6_PIN
  745. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  746. FTM0_C6V = cval;
  747. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  748. break;
  749. #endif
  750. #ifdef FTM0_CH7_PIN
  751. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  752. FTM0_C7V = cval;
  753. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  754. break;
  755. #endif
  756. #ifdef FTM1_CH0_PIN
  757. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  758. FTM1_C0V = cval;
  759. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  760. break;
  761. #endif
  762. #ifdef FTM1_CH1_PIN
  763. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  764. FTM1_C1V = cval;
  765. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  766. break;
  767. #endif
  768. #ifdef FTM2_CH0_PIN
  769. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  770. FTM2_C0V = cval;
  771. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  772. break;
  773. #endif
  774. #ifdef FTM2_CH1_PIN
  775. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  776. FTM2_C1V = cval;
  777. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  778. break;
  779. #endif
  780. #ifdef FTM3_CH0_PIN
  781. case FTM3_CH0_PIN:
  782. FTM3_C0V = cval;
  783. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  784. break;
  785. #endif
  786. #ifdef FTM3_CH1_PIN
  787. case FTM3_CH1_PIN:
  788. FTM3_C1V = cval;
  789. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  790. break;
  791. #endif
  792. #ifdef FTM3_CH2_PIN
  793. case FTM3_CH2_PIN:
  794. FTM3_C2V = cval;
  795. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  796. break;
  797. #endif
  798. #ifdef FTM3_CH3_PIN
  799. case FTM3_CH3_PIN:
  800. FTM3_C3V = cval;
  801. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  802. break;
  803. #endif
  804. #ifdef FTM3_CH4_PIN
  805. case FTM3_CH4_PIN:
  806. FTM3_C4V = cval;
  807. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  808. break;
  809. #endif
  810. #ifdef FTM3_CH5_PIN
  811. case FTM3_CH5_PIN:
  812. FTM3_C5V = cval;
  813. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  814. break;
  815. #endif
  816. #ifdef FTM3_CH6_PIN
  817. case FTM3_CH6_PIN:
  818. FTM3_C6V = cval;
  819. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  820. break;
  821. #endif
  822. #ifdef FTM3_CH7_PIN
  823. case FTM3_CH7_PIN:
  824. FTM3_C7V = cval;
  825. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  826. break;
  827. #endif
  828. #ifdef TPM1_CH0_PIN
  829. case TPM1_CH0_PIN:
  830. TPM1_C0V = cval;
  831. FTM_PINCFG(TPM1_CH0_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  832. break;
  833. #endif
  834. #ifdef TPM1_CH1_PIN
  835. case TPM1_CH1_PIN:
  836. TPM1_C1V = cval;
  837. FTM_PINCFG(TPM1_CH1_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  838. break;
  839. #endif
  840. default:
  841. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  842. pinMode(pin, OUTPUT);
  843. }
  844. }
  845. void analogWriteRes(uint32_t bits)
  846. {
  847. if (bits < 1) {
  848. bits = 1;
  849. } else if (bits > 16) {
  850. bits = 16;
  851. }
  852. analog_write_res = bits;
  853. }
  854. void analogWriteFrequency(uint8_t pin, float frequency)
  855. {
  856. uint32_t prescale, mod, ftmClock, ftmClockSource;
  857. float minfreq;
  858. //serial_print("analogWriteFrequency: pin = ");
  859. //serial_phex(pin);
  860. //serial_print(", freq = ");
  861. //serial_phex32((uint32_t)frequency);
  862. //serial_print("\n");
  863. #ifdef TPM1_CH0_PIN
  864. if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  865. ftmClockSource = 1;
  866. ftmClock = 16000000;
  867. } else
  868. #endif
  869. #if defined(__MKL26Z64__)
  870. // Teensy LC does not support slow clock source (ftmClockSource = 2)
  871. ftmClockSource = 1; // Use default F_TIMER clock source
  872. ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
  873. #else
  874. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) {
  875. // frequency is too low for working with F_TIMER:
  876. ftmClockSource = 2; // Use alternative 31250Hz clock source
  877. ftmClock = 31250; // Set variable for the actual timer clock frequency
  878. } else {
  879. ftmClockSource = 1; // Use default F_TIMER clock source
  880. ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
  881. }
  882. #endif
  883. for (prescale = 0; prescale < 7; prescale++) {
  884. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  885. if (frequency >= minfreq) break;
  886. }
  887. //serial_print("F_TIMER/ftm_Clock = ");
  888. //serial_phex32(ftmClock >> prescale);
  889. //serial_print("\n");
  890. //serial_print("prescale = ");
  891. //serial_phex(prescale);
  892. //serial_print("\n");
  893. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  894. if (mod > 65535) mod = 65535;
  895. //serial_print("mod = ");
  896. //serial_phex32(mod);
  897. //serial_print("\n");
  898. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  899. FTM1_SC = 0;
  900. FTM1_CNT = 0;
  901. FTM1_MOD = mod;
  902. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  903. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  904. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  905. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  906. #ifdef FTM0_CH6_PIN
  907. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  908. #endif
  909. ) {
  910. FTM0_SC = 0;
  911. FTM0_CNT = 0;
  912. FTM0_MOD = mod;
  913. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  914. }
  915. #ifdef FTM2_CH0_PIN
  916. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  917. FTM2_SC = 0;
  918. FTM2_CNT = 0;
  919. FTM2_MOD = mod;
  920. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  921. }
  922. #endif
  923. #ifdef FTM3_CH0_PIN
  924. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  925. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  926. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  927. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  928. FTM3_SC = 0;
  929. FTM3_CNT = 0;
  930. FTM3_MOD = mod;
  931. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  932. }
  933. #endif
  934. #ifdef TPM1_CH0_PIN
  935. else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  936. TPM1_SC = 0;
  937. TPM1_CNT = 0;
  938. TPM1_MOD = mod;
  939. TPM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale);
  940. }
  941. #endif
  942. }
  943. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  944. void digitalWrite(uint8_t pin, uint8_t val)
  945. {
  946. if (pin >= CORE_NUM_DIGITAL) return;
  947. #ifdef KINETISK
  948. if (*portModeRegister(pin)) {
  949. if (val) {
  950. *portSetRegister(pin) = 1;
  951. } else {
  952. *portClearRegister(pin) = 1;
  953. }
  954. #else
  955. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  956. if (val) {
  957. *portSetRegister(pin) = digitalPinToBitMask(pin);
  958. } else {
  959. *portClearRegister(pin) = digitalPinToBitMask(pin);
  960. }
  961. #endif
  962. } else {
  963. volatile uint32_t *config = portConfigRegister(pin);
  964. if (val) {
  965. // TODO use bitband for atomic read-mod-write
  966. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  967. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  968. } else {
  969. // TODO use bitband for atomic read-mod-write
  970. *config &= ~(PORT_PCR_PE);
  971. //*config = PORT_PCR_MUX(1);
  972. }
  973. }
  974. }
  975. uint8_t digitalRead(uint8_t pin)
  976. {
  977. if (pin >= CORE_NUM_DIGITAL) return 0;
  978. #ifdef KINETISK
  979. return *portInputRegister(pin);
  980. #else
  981. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  982. #endif
  983. }
  984. void pinMode(uint8_t pin, uint8_t mode)
  985. {
  986. volatile uint32_t *config;
  987. if (pin >= CORE_NUM_DIGITAL) return;
  988. config = portConfigRegister(pin);
  989. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  990. #ifdef KINETISK
  991. *portModeRegister(pin) = 1;
  992. #else
  993. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  994. #endif
  995. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  996. if (mode == OUTPUT_OPENDRAIN) {
  997. *config |= PORT_PCR_ODE;
  998. } else {
  999. *config &= ~PORT_PCR_ODE;
  1000. }
  1001. } else {
  1002. #ifdef KINETISK
  1003. *portModeRegister(pin) = 0;
  1004. #else
  1005. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  1006. #endif
  1007. if (mode == INPUT) {
  1008. *config = PORT_PCR_MUX(1);
  1009. } else if (mode == INPUT_PULLUP) {
  1010. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  1011. } else if (mode == INPUT_PULLDOWN) {
  1012. *config = PORT_PCR_MUX(1) | PORT_PCR_PE;
  1013. } else { // INPUT_DISABLE
  1014. *config = 0;
  1015. }
  1016. }
  1017. }
  1018. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  1019. {
  1020. if (bitOrder == LSBFIRST) {
  1021. shiftOut_lsbFirst(dataPin, clockPin, value);
  1022. } else {
  1023. shiftOut_msbFirst(dataPin, clockPin, value);
  1024. }
  1025. }
  1026. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1027. {
  1028. uint8_t mask;
  1029. for (mask=0x01; mask; mask <<= 1) {
  1030. digitalWrite(dataPin, value & mask);
  1031. digitalWrite(clockPin, HIGH);
  1032. digitalWrite(clockPin, LOW);
  1033. }
  1034. }
  1035. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1036. {
  1037. uint8_t mask;
  1038. for (mask=0x80; mask; mask >>= 1) {
  1039. digitalWrite(dataPin, value & mask);
  1040. digitalWrite(clockPin, HIGH);
  1041. digitalWrite(clockPin, LOW);
  1042. }
  1043. }
  1044. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1045. {
  1046. if (bitOrder == LSBFIRST) {
  1047. return shiftIn_lsbFirst(dataPin, clockPin);
  1048. } else {
  1049. return shiftIn_msbFirst(dataPin, clockPin);
  1050. }
  1051. }
  1052. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1053. {
  1054. uint8_t mask, value=0;
  1055. for (mask=0x01; mask; mask <<= 1) {
  1056. digitalWrite(clockPin, HIGH);
  1057. if (digitalRead(dataPin)) value |= mask;
  1058. digitalWrite(clockPin, LOW);
  1059. }
  1060. return value;
  1061. }
  1062. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1063. {
  1064. uint8_t mask, value=0;
  1065. for (mask=0x80; mask; mask >>= 1) {
  1066. digitalWrite(clockPin, HIGH);
  1067. if (digitalRead(dataPin)) value |= mask;
  1068. digitalWrite(clockPin, LOW);
  1069. }
  1070. return value;
  1071. }
  1072. // the systick interrupt is supposed to increment this at 1 kHz rate
  1073. volatile uint32_t systick_millis_count = 0;
  1074. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1075. uint32_t micros(void)
  1076. {
  1077. uint32_t count, current, istatus;
  1078. __disable_irq();
  1079. current = SYST_CVR;
  1080. count = systick_millis_count;
  1081. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1082. __enable_irq();
  1083. //systick_current = current;
  1084. //systick_count = count;
  1085. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1086. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1087. current = ((F_CPU / 1000) - 1) - current;
  1088. #if defined(KINETISL) && F_CPU == 48000000
  1089. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1090. #elif defined(KINETISL) && F_CPU == 24000000
  1091. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1092. #endif
  1093. return count * 1000 + current / (F_CPU / 1000000);
  1094. }
  1095. void delay(uint32_t ms)
  1096. {
  1097. uint32_t start = micros();
  1098. if (ms > 0) {
  1099. while (1) {
  1100. while ((micros() - start) >= 1000) {
  1101. ms--;
  1102. if (ms == 0) return;
  1103. start += 1000;
  1104. }
  1105. yield();
  1106. }
  1107. }
  1108. }
  1109. // TODO: verify these result in correct timeouts...
  1110. #if F_CPU == 240000000
  1111. #define PULSEIN_LOOPS_PER_USEC 33
  1112. #elif F_CPU == 216000000
  1113. #define PULSEIN_LOOPS_PER_USEC 31
  1114. #elif F_CPU == 192000000
  1115. #define PULSEIN_LOOPS_PER_USEC 29
  1116. #elif F_CPU == 180000000
  1117. #define PULSEIN_LOOPS_PER_USEC 27
  1118. #elif F_CPU == 168000000
  1119. #define PULSEIN_LOOPS_PER_USEC 25
  1120. #elif F_CPU == 144000000
  1121. #define PULSEIN_LOOPS_PER_USEC 21
  1122. #elif F_CPU == 120000000
  1123. #define PULSEIN_LOOPS_PER_USEC 18
  1124. #elif F_CPU == 96000000
  1125. #define PULSEIN_LOOPS_PER_USEC 14
  1126. #elif F_CPU == 72000000
  1127. #define PULSEIN_LOOPS_PER_USEC 10
  1128. #elif F_CPU == 48000000
  1129. #define PULSEIN_LOOPS_PER_USEC 7
  1130. #elif F_CPU == 24000000
  1131. #define PULSEIN_LOOPS_PER_USEC 4
  1132. #elif F_CPU == 16000000
  1133. #define PULSEIN_LOOPS_PER_USEC 1
  1134. #elif F_CPU == 8000000
  1135. #define PULSEIN_LOOPS_PER_USEC 1
  1136. #elif F_CPU == 4000000
  1137. #define PULSEIN_LOOPS_PER_USEC 1
  1138. #elif F_CPU == 2000000
  1139. #define PULSEIN_LOOPS_PER_USEC 1
  1140. #endif
  1141. #if defined(KINETISK)
  1142. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1143. {
  1144. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1145. uint32_t usec_start, usec_stop;
  1146. // wait for any previous pulse to end
  1147. while (*reg) {
  1148. if (--timeout_count == 0) return 0;
  1149. }
  1150. // wait for the pulse to start
  1151. while (!*reg) {
  1152. if (--timeout_count == 0) return 0;
  1153. }
  1154. usec_start = micros();
  1155. // wait for the pulse to stop
  1156. while (*reg) {
  1157. if (--timeout_count == 0) return 0;
  1158. }
  1159. usec_stop = micros();
  1160. return usec_stop - usec_start;
  1161. }
  1162. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1163. {
  1164. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1165. uint32_t usec_start, usec_stop;
  1166. // wait for any previous pulse to end
  1167. while (!*reg) {
  1168. if (--timeout_count == 0) return 0;
  1169. }
  1170. // wait for the pulse to start
  1171. while (*reg) {
  1172. if (--timeout_count == 0) return 0;
  1173. }
  1174. usec_start = micros();
  1175. // wait for the pulse to stop
  1176. while (!*reg) {
  1177. if (--timeout_count == 0) return 0;
  1178. }
  1179. usec_stop = micros();
  1180. return usec_stop - usec_start;
  1181. }
  1182. // TODO: an inline version should handle the common case where state is const
  1183. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1184. {
  1185. if (pin >= CORE_NUM_DIGITAL) return 0;
  1186. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1187. return pulseIn_low(portInputRegister(pin), timeout);;
  1188. }
  1189. #elif defined(KINETISL)
  1190. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1191. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1192. {
  1193. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1194. uint32_t usec_start, usec_stop;
  1195. // wait for any previous pulse to end
  1196. while (*reg & mask) {
  1197. if (--timeout_count == 0) return -1;
  1198. }
  1199. // wait for the pulse to start
  1200. while (!(*reg & mask)) {
  1201. if (--timeout_count == 0) return 0;
  1202. }
  1203. usec_start = micros();
  1204. // wait for the pulse to stop
  1205. while (*reg & mask) {
  1206. if (--timeout_count == 0) return 0;
  1207. }
  1208. usec_stop = micros();
  1209. return usec_stop - usec_start;
  1210. }
  1211. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1212. {
  1213. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1214. uint32_t usec_start, usec_stop;
  1215. // wait for any previous pulse to end
  1216. while (!(*reg & mask)) {
  1217. if (--timeout_count == 0) return 0;
  1218. }
  1219. // wait for the pulse to start
  1220. while (*reg & mask) {
  1221. if (--timeout_count == 0) return 0;
  1222. }
  1223. usec_start = micros();
  1224. // wait for the pulse to stop
  1225. while (!(*reg & mask)) {
  1226. if (--timeout_count == 0) return 0;
  1227. }
  1228. usec_stop = micros();
  1229. return usec_stop - usec_start;
  1230. }
  1231. // TODO: an inline version should handle the common case where state is const
  1232. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1233. {
  1234. if (pin >= CORE_NUM_DIGITAL) return 0;
  1235. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1236. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1237. }
  1238. #endif