Teensy 4.1 core updated for C++20

607 linhas
18KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL2_TX_BUFFER_SIZE
  37. #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL2_RX_BUFFER_SIZE
  40. #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL2_TX_BUFFER_SIZE > 255
  76. static volatile uint16_t tx_buffer_head = 0;
  77. static volatile uint16_t tx_buffer_tail = 0;
  78. #else
  79. static volatile uint8_t tx_buffer_head = 0;
  80. static volatile uint8_t tx_buffer_tail = 0;
  81. #endif
  82. #if SERIAL2_RX_BUFFER_SIZE > 255
  83. static volatile uint16_t rx_buffer_head = 0;
  84. static volatile uint16_t rx_buffer_tail = 0;
  85. #else
  86. static volatile uint8_t rx_buffer_head = 0;
  87. static volatile uint8_t rx_buffer_tail = 0;
  88. #endif
  89. #if defined(KINETISK)
  90. static uint8_t rx_pin_num = 9;
  91. static uint8_t tx_pin_num = 10;
  92. #endif
  93. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  94. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  95. #ifdef HAS_KINETISK_UART1_FIFO
  96. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  97. #else
  98. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  99. #endif
  100. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  101. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  102. #define C2_TX_INACTIVE C2_ENABLE
  103. void serial2_begin(uint32_t divisor)
  104. {
  105. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  106. rx_buffer_head = 0;
  107. rx_buffer_tail = 0;
  108. tx_buffer_head = 0;
  109. tx_buffer_tail = 0;
  110. transmitting = 0;
  111. #if defined(KINETISK)
  112. switch (rx_pin_num) {
  113. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  114. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  115. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  116. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  117. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  118. #endif
  119. }
  120. switch (tx_pin_num) {
  121. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  122. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  123. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  124. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  125. case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  126. #endif
  127. }
  128. #elif defined(KINETISL)
  129. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  130. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  131. #endif
  132. #if defined(HAS_KINETISK_UART1)
  133. if (divisor < 32) divisor = 32;
  134. UART1_BDH = (divisor >> 13) & 0x1F;
  135. UART1_BDL = (divisor >> 5) & 0xFF;
  136. UART1_C4 = divisor & 0x1F;
  137. #ifdef HAS_KINETISK_UART1_FIFO
  138. UART1_C1 = UART_C1_ILT;
  139. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  140. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  141. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  142. #else
  143. UART1_C1 = 0;
  144. UART1_PFIFO = 0;
  145. #endif
  146. #elif defined(HAS_KINETISL_UART1)
  147. if (divisor < 1) divisor = 1;
  148. UART1_BDH = (divisor >> 8) & 0x1F;
  149. UART1_BDL = divisor & 0xFF;
  150. UART1_C1 = 0;
  151. #endif
  152. UART1_C2 = C2_TX_INACTIVE;
  153. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  154. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  155. }
  156. void serial2_format(uint32_t format)
  157. {
  158. uint8_t c;
  159. c = UART1_C1;
  160. c = (c & ~0x13) | (format & 0x03); // configure parity
  161. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  162. UART1_C1 = c;
  163. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  164. c = UART1_S2 & ~0x10;
  165. if (format & 0x10) c |= 0x10; // rx invert
  166. UART1_S2 = c;
  167. c = UART1_C3 & ~0x10;
  168. if (format & 0x20) c |= 0x10; // tx invert
  169. UART1_C3 = c;
  170. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  171. c = UART1_C4 & 0x1F;
  172. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  173. UART1_C4 = c;
  174. use9Bits = format & 0x80;
  175. #endif
  176. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  177. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  178. if ( format & 0x100) {
  179. uint8_t bdl = UART1_BDL;
  180. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  181. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  182. }
  183. #endif
  184. }
  185. void serial2_end(void)
  186. {
  187. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  188. while (transmitting) yield(); // wait for buffered data to send
  189. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  190. UART1_C2 = 0;
  191. #if defined(KINETISK)
  192. switch (rx_pin_num) {
  193. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  194. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  195. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  196. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  197. case 59: CORE_PIN59_CONFIG = 0; break;
  198. #endif
  199. }
  200. switch (tx_pin_num & 127) {
  201. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  202. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  203. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  204. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  205. case 58: CORE_PIN58_CONFIG = 0; break;
  206. #endif
  207. }
  208. #elif defined(KINETISL)
  209. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  210. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  211. #endif
  212. UART1_S1;
  213. UART1_D; // clear leftover error status
  214. rx_buffer_head = 0;
  215. rx_buffer_tail = 0;
  216. if (rts_pin) rts_deassert();
  217. }
  218. void serial2_set_transmit_pin(uint8_t pin)
  219. {
  220. while (transmitting) ;
  221. pinMode(pin, OUTPUT);
  222. digitalWrite(pin, LOW);
  223. transmit_pin = portOutputRegister(pin);
  224. #if defined(KINETISL)
  225. transmit_mask = digitalPinToBitMask(pin);
  226. #endif
  227. }
  228. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  229. {
  230. #if defined(KINETISK)
  231. uint32_t cfg;
  232. if (opendrain) pin |= 128;
  233. if (pin == tx_pin_num) return;
  234. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  235. switch (tx_pin_num & 127) {
  236. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  237. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  238. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  239. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  240. case 58: CORE_PIN58_CONFIG = 0; break;
  241. #endif
  242. }
  243. if (opendrain) {
  244. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  245. } else {
  246. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  247. }
  248. switch (pin & 127) {
  249. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  250. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  251. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  252. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  253. case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
  254. #endif
  255. }
  256. }
  257. tx_pin_num = pin;
  258. #endif
  259. }
  260. void serial2_set_rx(uint8_t pin)
  261. {
  262. #if defined(KINETISK)
  263. if (pin == rx_pin_num) return;
  264. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  265. switch (rx_pin_num) {
  266. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  267. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  268. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  269. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  270. case 59: CORE_PIN59_CONFIG = 0; break;
  271. #endif
  272. }
  273. switch (pin) {
  274. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  275. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  276. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  277. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  278. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  279. #endif
  280. }
  281. }
  282. rx_pin_num = pin;
  283. #endif
  284. }
  285. int serial2_set_rts(uint8_t pin)
  286. {
  287. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  288. if (pin < CORE_NUM_DIGITAL) {
  289. rts_pin = portOutputRegister(pin);
  290. #if defined(KINETISL)
  291. rts_mask = digitalPinToBitMask(pin);
  292. #endif
  293. pinMode(pin, OUTPUT);
  294. rts_assert();
  295. } else {
  296. rts_pin = NULL;
  297. return 0;
  298. }
  299. /*
  300. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  301. if (pin == 22) {
  302. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  303. } else {
  304. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  305. return 0;
  306. }
  307. UART1_MODEM |= UART_MODEM_RXRTSE;
  308. */
  309. return 1;
  310. }
  311. int serial2_set_cts(uint8_t pin)
  312. {
  313. #if defined(KINETISK)
  314. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  315. if (pin == 23) {
  316. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  317. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
  318. } else if (pin == 60) {
  319. CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  320. #endif
  321. } else {
  322. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  323. return 0;
  324. }
  325. UART1_MODEM |= UART_MODEM_TXCTSE;
  326. return 1;
  327. #else
  328. return 0;
  329. #endif
  330. }
  331. void serial2_putchar(uint32_t c)
  332. {
  333. uint32_t head, n;
  334. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  335. if (transmit_pin) transmit_assert();
  336. head = tx_buffer_head;
  337. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  338. while (tx_buffer_tail == head) {
  339. int priority = nvic_execution_priority();
  340. if (priority <= IRQ_PRIORITY) {
  341. if ((UART1_S1 & UART_S1_TDRE)) {
  342. uint32_t tail = tx_buffer_tail;
  343. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  344. n = tx_buffer[tail];
  345. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  346. UART1_D = n;
  347. tx_buffer_tail = tail;
  348. }
  349. } else if (priority >= 256) {
  350. yield(); // wait
  351. }
  352. }
  353. tx_buffer[head] = c;
  354. transmitting = 1;
  355. tx_buffer_head = head;
  356. UART1_C2 = C2_TX_ACTIVE;
  357. }
  358. #ifdef HAS_KINETISK_UART1_FIFO
  359. void serial2_write(const void *buf, unsigned int count)
  360. {
  361. const uint8_t *p = (const uint8_t *)buf;
  362. const uint8_t *end = p + count;
  363. uint32_t head, n;
  364. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  365. if (transmit_pin) transmit_assert();
  366. while (p < end) {
  367. head = tx_buffer_head;
  368. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  369. if (tx_buffer_tail == head) {
  370. UART1_C2 = C2_TX_ACTIVE;
  371. do {
  372. int priority = nvic_execution_priority();
  373. if (priority <= IRQ_PRIORITY) {
  374. if ((UART1_S1 & UART_S1_TDRE)) {
  375. uint32_t tail = tx_buffer_tail;
  376. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  377. n = tx_buffer[tail];
  378. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  379. UART1_D = n;
  380. tx_buffer_tail = tail;
  381. }
  382. } else if (priority >= 256) {
  383. yield();
  384. }
  385. } while (tx_buffer_tail == head);
  386. }
  387. tx_buffer[head] = *p++;
  388. transmitting = 1;
  389. tx_buffer_head = head;
  390. }
  391. UART1_C2 = C2_TX_ACTIVE;
  392. }
  393. #else
  394. void serial2_write(const void *buf, unsigned int count)
  395. {
  396. const uint8_t *p = (const uint8_t *)buf;
  397. while (count-- > 0) serial2_putchar(*p++);
  398. }
  399. #endif
  400. void serial2_flush(void)
  401. {
  402. while (transmitting) yield(); // wait
  403. }
  404. int serial2_write_buffer_free(void)
  405. {
  406. uint32_t head, tail;
  407. head = tx_buffer_head;
  408. tail = tx_buffer_tail;
  409. if (head >= tail) return SERIAL2_TX_BUFFER_SIZE - 1 - head + tail;
  410. return tail - head - 1;
  411. }
  412. int serial2_available(void)
  413. {
  414. uint32_t head, tail;
  415. head = rx_buffer_head;
  416. tail = rx_buffer_tail;
  417. if (head >= tail) return head - tail;
  418. return SERIAL2_RX_BUFFER_SIZE + head - tail;
  419. }
  420. int serial2_getchar(void)
  421. {
  422. uint32_t head, tail;
  423. int c;
  424. head = rx_buffer_head;
  425. tail = rx_buffer_tail;
  426. if (head == tail) return -1;
  427. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  428. c = rx_buffer[tail];
  429. rx_buffer_tail = tail;
  430. if (rts_pin) {
  431. int avail;
  432. if (head >= tail) avail = head - tail;
  433. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  434. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  435. }
  436. return c;
  437. }
  438. int serial2_peek(void)
  439. {
  440. uint32_t head, tail;
  441. head = rx_buffer_head;
  442. tail = rx_buffer_tail;
  443. if (head == tail) return -1;
  444. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  445. return rx_buffer[tail];
  446. }
  447. void serial2_clear(void)
  448. {
  449. #ifdef HAS_KINETISK_UART1_FIFO
  450. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  451. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  452. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  453. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  454. #endif
  455. rx_buffer_head = rx_buffer_tail;
  456. if (rts_pin) rts_assert();
  457. }
  458. // status interrupt combines
  459. // Transmit data below watermark UART_S1_TDRE
  460. // Transmit complete UART_S1_TC
  461. // Idle line UART_S1_IDLE
  462. // Receive data above watermark UART_S1_RDRF
  463. // LIN break detect UART_S2_LBKDIF
  464. // RxD pin active edge UART_S2_RXEDGIF
  465. void uart1_status_isr(void)
  466. {
  467. uint32_t head, tail, n;
  468. uint8_t c;
  469. #ifdef HAS_KINETISK_UART1_FIFO
  470. uint32_t newhead;
  471. uint8_t avail;
  472. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  473. __disable_irq();
  474. avail = UART1_RCFIFO;
  475. if (avail == 0) {
  476. // The only way to clear the IDLE interrupt flag is
  477. // to read the data register. But reading with no
  478. // data causes a FIFO underrun, which causes the
  479. // FIFO to return corrupted data. If anyone from
  480. // Freescale reads this, what a poor design! There
  481. // write should be a write-1-to-clear for IDLE.
  482. c = UART1_D;
  483. // flushing the fifo recovers from the underrun,
  484. // but there's a possible race condition where a
  485. // new character could be received between reading
  486. // RCFIFO == 0 and flushing the FIFO. To minimize
  487. // the chance, interrupts are disabled so a higher
  488. // priority interrupt (hopefully) doesn't delay.
  489. // TODO: change this to disabling the IDLE interrupt
  490. // which won't be simple, since we already manage
  491. // which transmit interrupts are enabled.
  492. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  493. __enable_irq();
  494. } else {
  495. __enable_irq();
  496. head = rx_buffer_head;
  497. tail = rx_buffer_tail;
  498. do {
  499. if (use9Bits && (UART1_C3 & 0x80)) {
  500. n = UART1_D | 0x100;
  501. } else {
  502. n = UART1_D;
  503. }
  504. newhead = head + 1;
  505. if (newhead >= SERIAL2_RX_BUFFER_SIZE) newhead = 0;
  506. if (newhead != tail) {
  507. head = newhead;
  508. rx_buffer[head] = n;
  509. }
  510. } while (--avail > 0);
  511. rx_buffer_head = head;
  512. if (rts_pin) {
  513. int avail;
  514. if (head >= tail) avail = head - tail;
  515. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  516. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  517. }
  518. }
  519. }
  520. c = UART1_C2;
  521. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  522. head = tx_buffer_head;
  523. tail = tx_buffer_tail;
  524. do {
  525. if (tail == head) break;
  526. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  527. avail = UART1_S1;
  528. n = tx_buffer[tail];
  529. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  530. UART1_D = n;
  531. } while (UART1_TCFIFO < 8);
  532. tx_buffer_tail = tail;
  533. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  534. }
  535. #else
  536. if (UART1_S1 & UART_S1_RDRF) {
  537. if (use9Bits && (UART1_C3 & 0x80)) {
  538. n = UART1_D | 0x100;
  539. } else {
  540. n = UART1_D;
  541. }
  542. head = rx_buffer_head + 1;
  543. if (head >= SERIAL2_RX_BUFFER_SIZE) head = 0;
  544. if (head != rx_buffer_tail) {
  545. rx_buffer[head] = n;
  546. rx_buffer_head = head;
  547. }
  548. }
  549. c = UART1_C2;
  550. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  551. head = tx_buffer_head;
  552. tail = tx_buffer_tail;
  553. if (head == tail) {
  554. UART1_C2 = C2_TX_COMPLETING;
  555. } else {
  556. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  557. n = tx_buffer[tail];
  558. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  559. UART1_D = n;
  560. tx_buffer_tail = tail;
  561. }
  562. }
  563. #endif
  564. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  565. transmitting = 0;
  566. if (transmit_pin) transmit_deassert();
  567. UART1_C2 = C2_TX_INACTIVE;
  568. }
  569. }