|
- /* Teensyduino Core Library
- * http://www.pjrc.com/teensy/
- * Copyright (c) 2013 PJRC.COM, LLC.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * 1. The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * 2. If the Software is incorporated into a build system that allows
- * selection among a list of target devices, then similar target
- * devices manufactured by PJRC.COM must be included in the list of
- * target devices and selectable in the same manner.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
- #include "core_pins.h"
- //#include "HardwareSerial.h"
-
- static uint8_t calibrating;
- static uint8_t analog_right_shift = 0;
- static uint8_t analog_config_bits = 10;
- static uint8_t analog_num_average = 4;
- static uint8_t analog_reference_internal = 0;
-
- // the alternate clock is connected to OSCERCLK (16 MHz).
- // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
- // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
-
- #if F_BUS == 60000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
- #elif F_BUS == 56000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
- #elif F_BUS == 48000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz
- #elif F_BUS == 40000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz
- #elif F_BUS == 36000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
- #elif F_BUS == 24000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz
- #elif F_BUS == 4000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
- #elif F_BUS == 2000000
- #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
- #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
- #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
- #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
- #else
- #error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz"
- #endif
-
- void analog_init(void)
- {
- uint32_t num;
-
- VREF_TRM = 0x60;
- VREF_SC = 0xE1; // enable 1.2 volt ref
-
- if (analog_config_bits == 8) {
- ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
- ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
- #if defined(__MK20DX256__)
- ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
- ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
- #endif
- } else if (analog_config_bits == 10) {
- ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
- ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
- #if defined(__MK20DX256__)
- ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
- ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
- #endif
- } else if (analog_config_bits == 12) {
- ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
- ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
- #if defined(__MK20DX256__)
- ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
- ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
- #endif
- } else {
- ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
- ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
- #if defined(__MK20DX256__)
- ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
- ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
- #endif
- }
-
- if (analog_reference_internal) {
- ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
- #if defined(__MK20DX256__)
- ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
- #endif
- } else {
- ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
- #if defined(__MK20DX256__)
- ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
- #endif
- }
-
- num = analog_num_average;
- if (num <= 1) {
- ADC0_SC3 = ADC_SC3_CAL; // begin cal
- #if defined(__MK20DX256__)
- ADC1_SC3 = ADC_SC3_CAL; // begin cal
- #endif
- } else if (num <= 4) {
- ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
- #if defined(__MK20DX256__)
- ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
- #endif
- } else if (num <= 8) {
- ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
- #if defined(__MK20DX256__)
- ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
- #endif
- } else if (num <= 16) {
- ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
- #if defined(__MK20DX256__)
- ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
- #endif
- } else {
- ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
- #if defined(__MK20DX256__)
- ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
- #endif
- }
- calibrating = 1;
- }
-
- static void wait_for_cal(void)
- {
- uint16_t sum;
-
- //serial_print("wait_for_cal\n");
- #if defined(__MK20DX128__)
- while (ADC0_SC3 & ADC_SC3_CAL) {
- // wait
- }
- #elif defined(__MK20DX256__)
- while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
- // wait
- }
- #endif
- __disable_irq();
- if (calibrating) {
- //serial_print("\n");
- sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
- sum = (sum / 2) | 0x8000;
- ADC0_PG = sum;
- //serial_print("ADC0_PG = ");
- //serial_phex16(sum);
- //serial_print("\n");
- sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
- sum = (sum / 2) | 0x8000;
- ADC0_MG = sum;
- //serial_print("ADC0_MG = ");
- //serial_phex16(sum);
- //serial_print("\n");
- #if defined(__MK20DX256__)
- sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
- sum = (sum / 2) | 0x8000;
- ADC1_PG = sum;
- sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
- sum = (sum / 2) | 0x8000;
- ADC1_MG = sum;
- #endif
- calibrating = 0;
- }
- __enable_irq();
- }
-
- // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
- // VREFH/VREFL - connected as the primary reference option
- // 1.2 V VREF_OUT - connected as the VALT reference option
-
-
- #define DEFAULT 0
- #define INTERNAL 2
- #define INTERNAL1V2 2
- #define INTERNAL1V1 2
- #define EXTERNAL 0
-
- void analogReference(uint8_t type)
- {
- if (type) {
- // internal reference requested
- if (!analog_reference_internal) {
- analog_reference_internal = 1;
- if (calibrating) {
- ADC0_SC3 = 0; // cancel cal
- #if defined(__MK20DX256__)
- ADC1_SC3 = 0; // cancel cal
- #endif
- }
- analog_init();
- }
- } else {
- // vcc or external reference requested
- if (analog_reference_internal) {
- analog_reference_internal = 0;
- if (calibrating) {
- ADC0_SC3 = 0; // cancel cal
- #if defined(__MK20DX256__)
- ADC1_SC3 = 0; // cancel cal
- #endif
- }
- analog_init();
- }
- }
- }
-
-
- void analogReadRes(unsigned int bits)
- {
- unsigned int config;
-
- if (bits >= 13) {
- if (bits > 16) bits = 16;
- config = 16;
- } else if (bits >= 11) {
- config = 12;
- } else if (bits >= 9) {
- config = 10;
- } else {
- config = 8;
- }
- analog_right_shift = config - bits;
- if (config != analog_config_bits) {
- analog_config_bits = config;
- if (calibrating) ADC0_SC3 = 0; // cancel cal
- analog_init();
- }
- }
-
- void analogReadAveraging(unsigned int num)
- {
-
- if (calibrating) wait_for_cal();
- if (num <= 1) {
- num = 0;
- ADC0_SC3 = 0;
- } else if (num <= 4) {
- num = 4;
- ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
- } else if (num <= 8) {
- num = 8;
- ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
- } else if (num <= 16) {
- num = 16;
- ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
- } else {
- num = 32;
- ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
- }
- analog_num_average = num;
- }
-
- // The SC1A register is used for both software and hardware trigger modes of operation.
-
- #if defined(__MK20DX128__)
- static const uint8_t channel2sc1a[] = {
- 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
- 0, 19, 3, 21, 26, 22, 23
- };
- #elif defined(__MK20DX256__)
- static const uint8_t channel2sc1a[] = {
- 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
- 0, 19, 3, 19+128, 26, 18+128, 23,
- 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
- // A15 26 E1 ADC1_SE5a 5+64
- // A16 27 C9 ADC1_SE5b 5
- // A17 28 C8 ADC1_SE4b 4
- // A18 29 C10 ADC1_SE6b 6
- // A19 30 C11 ADC1_SE7b 7
- // A20 31 E0 ADC1_SE4a 4+64
- };
- #endif
-
-
-
- // TODO: perhaps this should store the NVIC priority, so it works recursively?
- static volatile uint8_t analogReadBusyADC0 = 0;
- #if defined(__MK20DX256__)
- static volatile uint8_t analogReadBusyADC1 = 0;
- #endif
-
- int analogRead(uint8_t pin)
- {
- int result;
- uint8_t index, channel;
-
- //serial_phex(pin);
- //serial_print(" ");
-
- if (pin <= 13) {
- index = pin; // 0-13 refer to A0-A13
- } else if (pin <= 23) {
- index = pin - 14; // 14-23 are A0-A9
- #if defined(__MK20DX256__)
- } else if (pin >= 26 && pin <= 31) {
- index = pin - 9; // 26-31 are A15-A20
- #endif
- } else if (pin >= 34 && pin <= 40) {
- index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
- // 39 is vref, 40 is unused (A14 on Teensy 3.1)
- } else {
- return 0; // all others are invalid
- }
-
- //serial_phex(index);
- //serial_print(" ");
-
- channel = channel2sc1a[index];
- //serial_phex(channel);
- //serial_print(" ");
-
- //serial_print("analogRead");
- //return 0;
- if (calibrating) wait_for_cal();
- //pin = 5; // PTD1/SE5b, pin 14, analog 0
-
- #if defined(__MK20DX256__)
- if (channel & 0x80) goto beginADC1;
- #endif
-
- __disable_irq();
- startADC0:
- //serial_print("startADC0\n");
- ADC0_SC1A = channel;
- analogReadBusyADC0 = 1;
- __enable_irq();
- while (1) {
- __disable_irq();
- if ((ADC0_SC1A & ADC_SC1_COCO)) {
- result = ADC0_RA;
- analogReadBusyADC0 = 0;
- __enable_irq();
- result >>= analog_right_shift;
- return result;
- }
- // detect if analogRead was used from an interrupt
- // if so, our analogRead got canceled, so it must
- // be restarted.
- if (!analogReadBusyADC0) goto startADC0;
- __enable_irq();
- yield();
- }
-
- #if defined(__MK20DX256__)
- beginADC1:
- __disable_irq();
- startADC1:
- //serial_print("startADC0\n");
- // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
- if (channel & 0x40) {
- ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
- } else {
- ADC1_CFG2 |= ADC_CFG2_MUXSEL;
- }
- ADC1_SC1A = channel & 0x3F;
- analogReadBusyADC1 = 1;
- __enable_irq();
- while (1) {
- __disable_irq();
- if ((ADC1_SC1A & ADC_SC1_COCO)) {
- result = ADC1_RA;
- analogReadBusyADC1 = 0;
- __enable_irq();
- result >>= analog_right_shift;
- return result;
- }
- // detect if analogRead was used from an interrupt
- // if so, our analogRead got canceled, so it must
- // be restarted.
- if (!analogReadBusyADC1) goto startADC1;
- __enable_irq();
- yield();
- }
- #endif
- }
-
-
-
- void analogWriteDAC0(int val)
- {
- #if defined(__MK20DX256__)
- SIM_SCGC2 |= SIM_SCGC2_DAC0;
- if (analog_reference_internal) {
- DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
- } else {
- DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
- }
- if (val < 0) val = 0; // TODO: saturate instruction?
- else if (val > 4095) val = 4095;
- *(int16_t *)&(DAC0_DAT0L) = val;
- #endif
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|