Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1159 line
30KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2016 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. *
  30. * Trying to understand this rather complex code?
  31. *
  32. * Kevin Cuzner wrote a simpler version, and a great blog article:
  33. * http://kevincuzner.com/2014/12/12/teensy-3-1-bare-metal-writing-a-usb-driver/
  34. * https://github.com/kcuzner/teensy-oscilloscope/blob/master/scope-teensy/src/usb.c
  35. *
  36. * Andy Payne wrote another relatively simple USB example for Freescale Kinetis
  37. * https://github.com/payne92/bare-metal-arm
  38. */
  39. #include "usb_dev.h"
  40. #if F_CPU >= 20000000 && defined(NUM_ENDPOINTS)
  41. #include "kinetis.h"
  42. //#include "HardwareSerial.h"
  43. #include "usb_mem.h"
  44. #include <string.h> // for memset
  45. // buffer descriptor table
  46. typedef struct {
  47. uint32_t desc;
  48. void * addr;
  49. } bdt_t;
  50. __attribute__ ((section(".usbdescriptortable"), used))
  51. static bdt_t table[(NUM_ENDPOINTS+1)*4];
  52. static usb_packet_t *rx_first[NUM_ENDPOINTS];
  53. static usb_packet_t *rx_last[NUM_ENDPOINTS];
  54. static usb_packet_t *tx_first[NUM_ENDPOINTS];
  55. static usb_packet_t *tx_last[NUM_ENDPOINTS];
  56. uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
  57. static uint8_t tx_state[NUM_ENDPOINTS];
  58. #define TX_STATE_BOTH_FREE_EVEN_FIRST 0
  59. #define TX_STATE_BOTH_FREE_ODD_FIRST 1
  60. #define TX_STATE_EVEN_FREE 2
  61. #define TX_STATE_ODD_FREE 3
  62. #define TX_STATE_NONE_FREE_EVEN_FIRST 4
  63. #define TX_STATE_NONE_FREE_ODD_FIRST 5
  64. #define BDT_OWN 0x80
  65. #define BDT_DATA1 0x40
  66. #define BDT_DATA0 0x00
  67. #define BDT_DTS 0x08
  68. #define BDT_STALL 0x04
  69. #define BDT_PID(n) (((n) >> 2) & 15)
  70. #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
  71. | ((data) ? BDT_DATA1 : BDT_DATA0) \
  72. | ((count) << 16))
  73. #define TX 1
  74. #define RX 0
  75. #define ODD 1
  76. #define EVEN 0
  77. #define DATA0 0
  78. #define DATA1 1
  79. #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  80. #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  81. static union {
  82. struct {
  83. union {
  84. struct {
  85. uint8_t bmRequestType;
  86. uint8_t bRequest;
  87. };
  88. uint16_t wRequestAndType;
  89. };
  90. uint16_t wValue;
  91. uint16_t wIndex;
  92. uint16_t wLength;
  93. };
  94. struct {
  95. uint32_t word1;
  96. uint32_t word2;
  97. };
  98. } setup;
  99. #define GET_STATUS 0
  100. #define CLEAR_FEATURE 1
  101. #define SET_FEATURE 3
  102. #define SET_ADDRESS 5
  103. #define GET_DESCRIPTOR 6
  104. #define SET_DESCRIPTOR 7
  105. #define GET_CONFIGURATION 8
  106. #define SET_CONFIGURATION 9
  107. #define GET_INTERFACE 10
  108. #define SET_INTERFACE 11
  109. #define SYNCH_FRAME 12
  110. // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
  111. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
  112. // Status stage uses a DATA1 PID.
  113. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  114. static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  115. static const uint8_t *ep0_tx_ptr = NULL;
  116. static uint16_t ep0_tx_len;
  117. static uint8_t ep0_tx_bdt_bank = 0;
  118. static uint8_t ep0_tx_data_toggle = 0;
  119. uint8_t usb_rx_memory_needed = 0;
  120. volatile uint8_t usb_configuration = 0;
  121. volatile uint8_t usb_reboot_timer = 0;
  122. static void endpoint0_stall(void)
  123. {
  124. USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  125. }
  126. static void endpoint0_transmit(const void *data, uint32_t len)
  127. {
  128. #if 0
  129. serial_print("tx0:");
  130. serial_phex32((uint32_t)data);
  131. serial_print(",");
  132. serial_phex16(len);
  133. serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
  134. serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
  135. #endif
  136. table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
  137. table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
  138. ep0_tx_data_toggle ^= 1;
  139. ep0_tx_bdt_bank ^= 1;
  140. }
  141. static uint8_t reply_buffer[8];
  142. static void usb_setup(void)
  143. {
  144. const uint8_t *data = NULL;
  145. uint32_t datalen = 0;
  146. const usb_descriptor_list_t *list;
  147. uint32_t size;
  148. volatile uint8_t *reg;
  149. uint8_t epconf;
  150. const uint8_t *cfg;
  151. int i;
  152. switch (setup.wRequestAndType) {
  153. case 0x0500: // SET_ADDRESS
  154. break;
  155. case 0x0900: // SET_CONFIGURATION
  156. //serial_print("configure\n");
  157. usb_configuration = setup.wValue;
  158. reg = &USB0_ENDPT1;
  159. cfg = usb_endpoint_config_table;
  160. // clear all BDT entries, free any allocated memory...
  161. for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
  162. if (table[i].desc & BDT_OWN) {
  163. usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
  164. }
  165. }
  166. // free all queued packets
  167. for (i=0; i < NUM_ENDPOINTS; i++) {
  168. usb_packet_t *p, *n;
  169. p = rx_first[i];
  170. while (p) {
  171. n = p->next;
  172. usb_free(p);
  173. p = n;
  174. }
  175. rx_first[i] = NULL;
  176. rx_last[i] = NULL;
  177. p = tx_first[i];
  178. while (p) {
  179. n = p->next;
  180. usb_free(p);
  181. p = n;
  182. }
  183. tx_first[i] = NULL;
  184. tx_last[i] = NULL;
  185. usb_rx_byte_count_data[i] = 0;
  186. switch (tx_state[i]) {
  187. case TX_STATE_EVEN_FREE:
  188. case TX_STATE_NONE_FREE_EVEN_FIRST:
  189. tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  190. break;
  191. case TX_STATE_ODD_FREE:
  192. case TX_STATE_NONE_FREE_ODD_FIRST:
  193. tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
  194. break;
  195. default:
  196. break;
  197. }
  198. }
  199. usb_rx_memory_needed = 0;
  200. for (i=1; i <= NUM_ENDPOINTS; i++) {
  201. epconf = *cfg++;
  202. *reg = epconf;
  203. reg += 4;
  204. #ifdef AUDIO_INTERFACE
  205. if (i == AUDIO_RX_ENDPOINT) {
  206. table[index(i, RX, EVEN)].addr = usb_audio_receive_buffer;
  207. table[index(i, RX, EVEN)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  208. table[index(i, RX, ODD)].addr = usb_audio_receive_buffer;
  209. table[index(i, RX, ODD)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  210. } else
  211. #endif
  212. if (epconf & USB_ENDPT_EPRXEN) {
  213. usb_packet_t *p;
  214. p = usb_malloc();
  215. if (p) {
  216. table[index(i, RX, EVEN)].addr = p->buf;
  217. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  218. } else {
  219. table[index(i, RX, EVEN)].desc = 0;
  220. usb_rx_memory_needed++;
  221. }
  222. p = usb_malloc();
  223. if (p) {
  224. table[index(i, RX, ODD)].addr = p->buf;
  225. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  226. } else {
  227. table[index(i, RX, ODD)].desc = 0;
  228. usb_rx_memory_needed++;
  229. }
  230. }
  231. table[index(i, TX, EVEN)].desc = 0;
  232. table[index(i, TX, ODD)].desc = 0;
  233. #ifdef AUDIO_INTERFACE
  234. if (i == AUDIO_SYNC_ENDPOINT) {
  235. table[index(i, TX, EVEN)].addr = &usb_audio_sync_feedback;
  236. table[index(i, TX, EVEN)].desc = (3<<16) | BDT_OWN;
  237. }
  238. #endif
  239. }
  240. break;
  241. case 0x0880: // GET_CONFIGURATION
  242. reply_buffer[0] = usb_configuration;
  243. datalen = 1;
  244. data = reply_buffer;
  245. break;
  246. case 0x0080: // GET_STATUS (device)
  247. reply_buffer[0] = 0;
  248. reply_buffer[1] = 0;
  249. datalen = 2;
  250. data = reply_buffer;
  251. break;
  252. case 0x0082: // GET_STATUS (endpoint)
  253. if (setup.wIndex > NUM_ENDPOINTS) {
  254. // TODO: do we need to handle IN vs OUT here?
  255. endpoint0_stall();
  256. return;
  257. }
  258. reply_buffer[0] = 0;
  259. reply_buffer[1] = 0;
  260. if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
  261. data = reply_buffer;
  262. datalen = 2;
  263. break;
  264. case 0x0102: // CLEAR_FEATURE (endpoint)
  265. i = setup.wIndex & 0x7F;
  266. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  267. // TODO: do we need to handle IN vs OUT here?
  268. endpoint0_stall();
  269. return;
  270. }
  271. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) &= ~0x02;
  272. // TODO: do we need to clear the data toggle here?
  273. break;
  274. case 0x0302: // SET_FEATURE (endpoint)
  275. i = setup.wIndex & 0x7F;
  276. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  277. // TODO: do we need to handle IN vs OUT here?
  278. endpoint0_stall();
  279. return;
  280. }
  281. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) |= 0x02;
  282. // TODO: do we need to clear the data toggle here?
  283. break;
  284. case 0x0680: // GET_DESCRIPTOR
  285. case 0x0681:
  286. //serial_print("desc:");
  287. //serial_phex16(setup.wValue);
  288. //serial_print("\n");
  289. for (list = usb_descriptor_list; 1; list++) {
  290. if (list->addr == NULL) break;
  291. //if (setup.wValue == list->wValue &&
  292. //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
  293. if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
  294. data = list->addr;
  295. if ((setup.wValue >> 8) == 3) {
  296. // for string descriptors, use the descriptor's
  297. // length field, allowing runtime configured
  298. // length.
  299. datalen = *(list->addr);
  300. } else {
  301. datalen = list->length;
  302. }
  303. #if 0
  304. serial_print("Desc found, ");
  305. serial_phex32((uint32_t)data);
  306. serial_print(",");
  307. serial_phex16(datalen);
  308. serial_print(",");
  309. serial_phex(data[0]);
  310. serial_phex(data[1]);
  311. serial_phex(data[2]);
  312. serial_phex(data[3]);
  313. serial_phex(data[4]);
  314. serial_phex(data[5]);
  315. serial_print("\n");
  316. #endif
  317. goto send;
  318. }
  319. }
  320. //serial_print("desc: not found\n");
  321. endpoint0_stall();
  322. return;
  323. #if defined(CDC_STATUS_INTERFACE)
  324. case 0x2221: // CDC_SET_CONTROL_LINE_STATE
  325. usb_cdc_line_rtsdtr_millis = systick_millis_count;
  326. usb_cdc_line_rtsdtr = setup.wValue;
  327. //serial_print("set control line state\n");
  328. break;
  329. case 0x2321: // CDC_SEND_BREAK
  330. break;
  331. case 0x2021: // CDC_SET_LINE_CODING
  332. //serial_print("set coding, waiting...\n");
  333. return;
  334. #endif
  335. #if defined(MTP_INTERFACE)
  336. case 0x2164: // Cancel Request (PTP spec, 5.2.1, page 8)
  337. // TODO: required by PTP spec
  338. endpoint0_stall();
  339. return;
  340. case 0x2166: // Device Reset (PTP spec, 5.2.3, page 10)
  341. // TODO: required by PTP spec
  342. endpoint0_stall();
  343. return;
  344. case 0x2167: // Get Device Statis (PTP spec, 5.2.4, page 10)
  345. // TODO: required by PTP spec
  346. endpoint0_stall();
  347. return;
  348. #endif
  349. // TODO: this does not work... why?
  350. #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
  351. case 0x0921: // HID SET_REPORT
  352. //serial_print(":)\n");
  353. return;
  354. case 0x0A21: // HID SET_IDLE
  355. break;
  356. // case 0xC940:
  357. #endif
  358. #if defined(AUDIO_INTERFACE)
  359. case 0x0B01: // SET_INTERFACE (alternate setting)
  360. if (setup.wIndex == AUDIO_INTERFACE+1) {
  361. usb_audio_transmit_setting = setup.wValue;
  362. if (usb_audio_transmit_setting > 0) {
  363. bdt_t *b = &table[index(AUDIO_TX_ENDPOINT, TX, EVEN)];
  364. uint8_t state = tx_state[AUDIO_TX_ENDPOINT-1];
  365. if (state) b++;
  366. if (!(b->desc & BDT_OWN)) {
  367. memset(usb_audio_transmit_buffer, 0, 176);
  368. b->addr = usb_audio_transmit_buffer;
  369. b->desc = (176 << 16) | BDT_OWN;
  370. tx_state[AUDIO_TX_ENDPOINT-1] = state ^ 1;
  371. }
  372. }
  373. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  374. usb_audio_receive_setting = setup.wValue;
  375. } else {
  376. endpoint0_stall();
  377. return;
  378. }
  379. break;
  380. case 0x0A81: // GET_INTERFACE (alternate setting)
  381. datalen = 1;
  382. data = reply_buffer;
  383. if (setup.wIndex == AUDIO_INTERFACE+1) {
  384. reply_buffer[0] = usb_audio_transmit_setting;
  385. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  386. reply_buffer[0] = usb_audio_receive_setting;
  387. } else {
  388. endpoint0_stall();
  389. return;
  390. }
  391. break;
  392. case 0x0121: // SET FEATURE
  393. case 0x0221:
  394. case 0x0321:
  395. case 0x0421:
  396. // handle these on the next packet. See usb_audio_set_feature()
  397. return;
  398. case 0x81A1: // GET FEATURE
  399. case 0x82A1:
  400. case 0x83A1:
  401. case 0x84A1:
  402. if (usb_audio_get_feature(&setup, reply_buffer, &datalen)) {
  403. data = reply_buffer;
  404. }
  405. else {
  406. endpoint0_stall();
  407. return;
  408. }
  409. break;
  410. case 0x81A2: // GET_CUR (wValue=0, wIndex=interface, wLength=len)
  411. if (setup.wLength >= 3) {
  412. reply_buffer[0] = 44100 & 255;
  413. reply_buffer[1] = 44100 >> 8;
  414. reply_buffer[2] = 0;
  415. datalen = 3;
  416. data = reply_buffer;
  417. } else {
  418. endpoint0_stall();
  419. return;
  420. }
  421. break;
  422. #endif
  423. #if defined(MULTITOUCH_INTERFACE)
  424. case 0x01A1:
  425. if (setup.wValue == 0x0300 && setup.wIndex == MULTITOUCH_INTERFACE) {
  426. reply_buffer[0] = MULTITOUCH_FINGERS;
  427. data = reply_buffer;
  428. datalen = 1;
  429. } else {
  430. endpoint0_stall();
  431. return;
  432. }
  433. break;
  434. #endif
  435. default:
  436. endpoint0_stall();
  437. return;
  438. }
  439. send:
  440. //serial_print("setup send ");
  441. //serial_phex32(data);
  442. //serial_print(",");
  443. //serial_phex16(datalen);
  444. //serial_print("\n");
  445. if (datalen > setup.wLength) datalen = setup.wLength;
  446. size = datalen;
  447. if (size > EP0_SIZE) size = EP0_SIZE;
  448. endpoint0_transmit(data, size);
  449. data += size;
  450. datalen -= size;
  451. if (datalen == 0 && size < EP0_SIZE) return;
  452. size = datalen;
  453. if (size > EP0_SIZE) size = EP0_SIZE;
  454. endpoint0_transmit(data, size);
  455. data += size;
  456. datalen -= size;
  457. if (datalen == 0 && size < EP0_SIZE) return;
  458. ep0_tx_ptr = data;
  459. ep0_tx_len = datalen;
  460. }
  461. //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
  462. //experiences any configuration event (configuration events are explained in
  463. //Sections 9.1.1.5 and 9.4.5).
  464. //Configuring a device or changing an alternate setting causes all of the status
  465. //and configuration values associated with endpoints in the affected interfaces
  466. //to be set to their default values. This includes setting the data toggle of
  467. //any endpoint using data toggles to the value DATA0.
  468. //For endpoints using data toggle, regardless of whether an endpoint has the
  469. //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
  470. //data toggle being reinitialized to DATA0.
  471. // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  472. static void usb_control(uint32_t stat)
  473. {
  474. bdt_t *b;
  475. uint32_t pid, size;
  476. uint8_t *buf;
  477. const uint8_t *data;
  478. b = stat2bufferdescriptor(stat);
  479. pid = BDT_PID(b->desc);
  480. //count = b->desc >> 16;
  481. buf = b->addr;
  482. //serial_print("pid:");
  483. //serial_phex(pid);
  484. //serial_print(", count:");
  485. //serial_phex(count);
  486. //serial_print("\n");
  487. switch (pid) {
  488. case 0x0D: // Setup received from host
  489. //serial_print("PID=Setup\n");
  490. //if (count != 8) ; // panic?
  491. // grab the 8 byte setup info
  492. setup.word1 = *(uint32_t *)(buf);
  493. setup.word2 = *(uint32_t *)(buf + 4);
  494. // give the buffer back
  495. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  496. //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
  497. //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
  498. // clear any leftover pending IN transactions
  499. ep0_tx_ptr = NULL;
  500. if (ep0_tx_data_toggle) {
  501. }
  502. //if (table[index(0, TX, EVEN)].desc & 0x80) {
  503. //serial_print("leftover tx even\n");
  504. //}
  505. //if (table[index(0, TX, ODD)].desc & 0x80) {
  506. //serial_print("leftover tx odd\n");
  507. //}
  508. table[index(0, TX, EVEN)].desc = 0;
  509. table[index(0, TX, ODD)].desc = 0;
  510. // first IN after Setup is always DATA1
  511. ep0_tx_data_toggle = 1;
  512. #if 0
  513. serial_print("bmRequestType:");
  514. serial_phex(setup.bmRequestType);
  515. serial_print(", bRequest:");
  516. serial_phex(setup.bRequest);
  517. serial_print(", wValue:");
  518. serial_phex16(setup.wValue);
  519. serial_print(", wIndex:");
  520. serial_phex16(setup.wIndex);
  521. serial_print(", len:");
  522. serial_phex16(setup.wLength);
  523. serial_print("\n");
  524. #endif
  525. // actually "do" the setup request
  526. usb_setup();
  527. // unfreeze the USB, now that we're ready
  528. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  529. break;
  530. case 0x01: // OUT transaction received from host
  531. case 0x02:
  532. //serial_print("PID=OUT\n");
  533. #ifdef CDC_STATUS_INTERFACE
  534. if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
  535. int i;
  536. uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
  537. //serial_print("set line coding ");
  538. for (i=0; i<7; i++) {
  539. //serial_phex(*buf);
  540. *dst++ = *buf++;
  541. }
  542. //serial_phex32(usb_cdc_line_coding[0]);
  543. //serial_print("\n");
  544. if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
  545. endpoint0_transmit(NULL, 0);
  546. }
  547. #endif
  548. #ifdef KEYBOARD_INTERFACE
  549. if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
  550. keyboard_leds = buf[0];
  551. endpoint0_transmit(NULL, 0);
  552. }
  553. #endif
  554. #ifdef SEREMU_INTERFACE
  555. if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
  556. && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
  557. usb_reboot_timer = 5;
  558. endpoint0_transmit(NULL, 0);
  559. }
  560. #endif
  561. #ifdef AUDIO_INTERFACE
  562. if (usb_audio_set_feature(&setup, buf)) {
  563. endpoint0_transmit(NULL, 0);
  564. }
  565. #endif
  566. // give the buffer back
  567. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  568. break;
  569. case 0x09: // IN transaction completed to host
  570. //serial_print("PID=IN:");
  571. //serial_phex(stat);
  572. //serial_print("\n");
  573. // send remaining data, if any...
  574. data = ep0_tx_ptr;
  575. if (data) {
  576. size = ep0_tx_len;
  577. if (size > EP0_SIZE) size = EP0_SIZE;
  578. endpoint0_transmit(data, size);
  579. data += size;
  580. ep0_tx_len -= size;
  581. ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
  582. }
  583. if (setup.bRequest == 5 && setup.bmRequestType == 0) {
  584. setup.bRequest = 0;
  585. //serial_print("set address: ");
  586. //serial_phex16(setup.wValue);
  587. //serial_print("\n");
  588. USB0_ADDR = setup.wValue;
  589. }
  590. break;
  591. //default:
  592. //serial_print("PID=unknown:");
  593. //serial_phex(pid);
  594. //serial_print("\n");
  595. }
  596. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  597. }
  598. usb_packet_t *usb_rx(uint32_t endpoint)
  599. {
  600. usb_packet_t *ret;
  601. endpoint--;
  602. if (endpoint >= NUM_ENDPOINTS) return NULL;
  603. __disable_irq();
  604. ret = rx_first[endpoint];
  605. if (ret) {
  606. rx_first[endpoint] = ret->next;
  607. usb_rx_byte_count_data[endpoint] -= ret->len;
  608. }
  609. __enable_irq();
  610. //serial_print("rx, epidx=");
  611. //serial_phex(endpoint);
  612. //serial_print(", packet=");
  613. //serial_phex32(ret);
  614. //serial_print("\n");
  615. return ret;
  616. }
  617. static uint32_t usb_queue_byte_count(const usb_packet_t *p)
  618. {
  619. uint32_t count=0;
  620. __disable_irq();
  621. for ( ; p; p = p->next) {
  622. count += p->len;
  623. }
  624. __enable_irq();
  625. return count;
  626. }
  627. // TODO: make this an inline function...
  628. /*
  629. uint32_t usb_rx_byte_count(uint32_t endpoint)
  630. {
  631. endpoint--;
  632. if (endpoint >= NUM_ENDPOINTS) return 0;
  633. return usb_rx_byte_count_data[endpoint];
  634. //return usb_queue_byte_count(rx_first[endpoint]);
  635. }
  636. */
  637. uint32_t usb_tx_byte_count(uint32_t endpoint)
  638. {
  639. endpoint--;
  640. if (endpoint >= NUM_ENDPOINTS) return 0;
  641. return usb_queue_byte_count(tx_first[endpoint]);
  642. }
  643. uint32_t usb_tx_packet_count(uint32_t endpoint)
  644. {
  645. const usb_packet_t *p;
  646. uint32_t count=0;
  647. endpoint--;
  648. if (endpoint >= NUM_ENDPOINTS) return 0;
  649. __disable_irq();
  650. for (p = tx_first[endpoint]; p; p = p->next) count++;
  651. __enable_irq();
  652. return count;
  653. }
  654. // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
  655. // receive endpoints are starving for memory. The intention is to give
  656. // endpoints needing receive memory priority over the user's code, which is
  657. // likely calling usb_malloc to obtain memory for transmitting. When the
  658. // user is creating data very quickly, their consumption could starve reception
  659. // without this prioritization. The packet buffer (input) is assigned to the
  660. // first endpoint needing memory.
  661. //
  662. void usb_rx_memory(usb_packet_t *packet)
  663. {
  664. unsigned int i;
  665. const uint8_t *cfg;
  666. cfg = usb_endpoint_config_table;
  667. //serial_print("rx_mem:");
  668. __disable_irq();
  669. for (i=1; i <= NUM_ENDPOINTS; i++) {
  670. #ifdef AUDIO_INTERFACE
  671. if (i == AUDIO_RX_ENDPOINT) continue;
  672. #endif
  673. if (*cfg++ & USB_ENDPT_EPRXEN) {
  674. if (table[index(i, RX, EVEN)].desc == 0) {
  675. table[index(i, RX, EVEN)].addr = packet->buf;
  676. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  677. usb_rx_memory_needed--;
  678. __enable_irq();
  679. //serial_phex(i);
  680. //serial_print(",even\n");
  681. return;
  682. }
  683. if (table[index(i, RX, ODD)].desc == 0) {
  684. table[index(i, RX, ODD)].addr = packet->buf;
  685. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  686. usb_rx_memory_needed--;
  687. __enable_irq();
  688. //serial_phex(i);
  689. //serial_print(",odd\n");
  690. return;
  691. }
  692. }
  693. }
  694. __enable_irq();
  695. // we should never reach this point. If we get here, it means
  696. // usb_rx_memory_needed was set greater than zero, but no memory
  697. // was actually needed.
  698. usb_rx_memory_needed = 0;
  699. usb_free(packet);
  700. return;
  701. }
  702. //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  703. //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  704. void usb_tx(uint32_t endpoint, usb_packet_t *packet)
  705. {
  706. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  707. uint8_t next;
  708. endpoint--;
  709. if (endpoint >= NUM_ENDPOINTS) return;
  710. __disable_irq();
  711. //serial_print("txstate=");
  712. //serial_phex(tx_state[endpoint]);
  713. //serial_print("\n");
  714. switch (tx_state[endpoint]) {
  715. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  716. next = TX_STATE_ODD_FREE;
  717. break;
  718. case TX_STATE_BOTH_FREE_ODD_FIRST:
  719. b++;
  720. next = TX_STATE_EVEN_FREE;
  721. break;
  722. case TX_STATE_EVEN_FREE:
  723. next = TX_STATE_NONE_FREE_ODD_FIRST;
  724. break;
  725. case TX_STATE_ODD_FREE:
  726. b++;
  727. next = TX_STATE_NONE_FREE_EVEN_FIRST;
  728. break;
  729. default:
  730. if (tx_first[endpoint] == NULL) {
  731. tx_first[endpoint] = packet;
  732. } else {
  733. tx_last[endpoint]->next = packet;
  734. }
  735. tx_last[endpoint] = packet;
  736. __enable_irq();
  737. return;
  738. }
  739. tx_state[endpoint] = next;
  740. b->addr = packet->buf;
  741. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  742. __enable_irq();
  743. }
  744. void usb_tx_isochronous(uint32_t endpoint, void *data, uint32_t len)
  745. {
  746. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  747. uint8_t next, state;
  748. endpoint--;
  749. if (endpoint >= NUM_ENDPOINTS) return;
  750. __disable_irq();
  751. state = tx_state[endpoint];
  752. if (state == 0) {
  753. next = 1;
  754. } else {
  755. b++;
  756. next = 0;
  757. }
  758. tx_state[endpoint] = next;
  759. b->addr = data;
  760. b->desc = (len << 16) | BDT_OWN;
  761. __enable_irq();
  762. }
  763. void _reboot_Teensyduino_(void)
  764. {
  765. // TODO: initialize R0 with a code....
  766. __asm__ volatile("bkpt");
  767. }
  768. void usb_isr(void)
  769. {
  770. uint8_t status, stat, t;
  771. //serial_print("isr");
  772. //status = USB0_ISTAT;
  773. //serial_phex(status);
  774. //serial_print("\n");
  775. restart:
  776. status = USB0_ISTAT;
  777. if ((status & USB_ISTAT_SOFTOK /* 04 */ )) {
  778. if (usb_configuration) {
  779. t = usb_reboot_timer;
  780. if (t) {
  781. usb_reboot_timer = --t;
  782. if (!t) _reboot_Teensyduino_();
  783. }
  784. #ifdef CDC_DATA_INTERFACE
  785. t = usb_cdc_transmit_flush_timer;
  786. if (t) {
  787. usb_cdc_transmit_flush_timer = --t;
  788. if (t == 0) usb_serial_flush_callback();
  789. }
  790. #endif
  791. #ifdef SEREMU_INTERFACE
  792. t = usb_seremu_transmit_flush_timer;
  793. if (t) {
  794. usb_seremu_transmit_flush_timer = --t;
  795. if (t == 0) usb_seremu_flush_callback();
  796. }
  797. #endif
  798. #ifdef MIDI_INTERFACE
  799. usb_midi_flush_output();
  800. #endif
  801. #ifdef FLIGHTSIM_INTERFACE
  802. usb_flightsim_flush_callback();
  803. #endif
  804. #ifdef MULTITOUCH_INTERFACE
  805. usb_touchscreen_update_callback();
  806. #endif
  807. }
  808. USB0_ISTAT = USB_ISTAT_SOFTOK;
  809. }
  810. if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
  811. uint8_t endpoint;
  812. stat = USB0_STAT;
  813. //serial_print("token: ep=");
  814. //serial_phex(stat >> 4);
  815. //serial_print(stat & 0x08 ? ",tx" : ",rx");
  816. //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
  817. endpoint = stat >> 4;
  818. if (endpoint == 0) {
  819. usb_control(stat);
  820. } else {
  821. bdt_t *b = stat2bufferdescriptor(stat);
  822. usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
  823. #if 0
  824. serial_print("ep:");
  825. serial_phex(endpoint);
  826. serial_print(", pid:");
  827. serial_phex(BDT_PID(b->desc));
  828. serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
  829. serial_print(", count:");
  830. serial_phex(b->desc >> 16);
  831. serial_print("\n");
  832. #endif
  833. endpoint--; // endpoint is index to zero-based arrays
  834. #ifdef AUDIO_INTERFACE
  835. if ((endpoint == AUDIO_TX_ENDPOINT-1) && (stat & 0x08)) {
  836. unsigned int len;
  837. len = usb_audio_transmit_callback();
  838. if (len > 0) {
  839. b = (bdt_t *)((uint32_t)b ^ 8);
  840. b->addr = usb_audio_transmit_buffer;
  841. b->desc = (len << 16) | BDT_OWN;
  842. tx_state[endpoint] ^= 1;
  843. }
  844. } else if ((endpoint == AUDIO_RX_ENDPOINT-1) && !(stat & 0x08)) {
  845. usb_audio_receive_callback(b->desc >> 16);
  846. b->addr = usb_audio_receive_buffer;
  847. b->desc = (AUDIO_RX_SIZE << 16) | BDT_OWN;
  848. } else if ((endpoint == AUDIO_SYNC_ENDPOINT-1) && (stat & 0x08)) {
  849. b = (bdt_t *)((uint32_t)b ^ 8);
  850. b->addr = &usb_audio_sync_feedback;
  851. b->desc = (3 << 16) | BDT_OWN;
  852. tx_state[endpoint] ^= 1;
  853. } else
  854. #endif
  855. if (stat & 0x08) { // transmit
  856. usb_free(packet);
  857. packet = tx_first[endpoint];
  858. if (packet) {
  859. //serial_print("tx packet\n");
  860. tx_first[endpoint] = packet->next;
  861. b->addr = packet->buf;
  862. switch (tx_state[endpoint]) {
  863. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  864. tx_state[endpoint] = TX_STATE_ODD_FREE;
  865. break;
  866. case TX_STATE_BOTH_FREE_ODD_FIRST:
  867. tx_state[endpoint] = TX_STATE_EVEN_FREE;
  868. break;
  869. case TX_STATE_EVEN_FREE:
  870. tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
  871. break;
  872. case TX_STATE_ODD_FREE:
  873. tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
  874. break;
  875. default:
  876. break;
  877. }
  878. b->desc = BDT_DESC(packet->len,
  879. ((uint32_t)b & 8) ? DATA1 : DATA0);
  880. } else {
  881. //serial_print("tx no packet\n");
  882. switch (tx_state[endpoint]) {
  883. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  884. case TX_STATE_BOTH_FREE_ODD_FIRST:
  885. break;
  886. case TX_STATE_EVEN_FREE:
  887. tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  888. break;
  889. case TX_STATE_ODD_FREE:
  890. tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
  891. break;
  892. default:
  893. tx_state[endpoint] = ((uint32_t)b & 8) ?
  894. TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
  895. break;
  896. }
  897. }
  898. } else { // receive
  899. packet->len = b->desc >> 16;
  900. if (packet->len > 0) {
  901. packet->index = 0;
  902. packet->next = NULL;
  903. if (rx_first[endpoint] == NULL) {
  904. //serial_print("rx 1st, epidx=");
  905. //serial_phex(endpoint);
  906. //serial_print(", packet=");
  907. //serial_phex32((uint32_t)packet);
  908. //serial_print("\n");
  909. rx_first[endpoint] = packet;
  910. } else {
  911. //serial_print("rx Nth, epidx=");
  912. //serial_phex(endpoint);
  913. //serial_print(", packet=");
  914. //serial_phex32((uint32_t)packet);
  915. //serial_print("\n");
  916. rx_last[endpoint]->next = packet;
  917. }
  918. rx_last[endpoint] = packet;
  919. usb_rx_byte_count_data[endpoint] += packet->len;
  920. // TODO: implement a per-endpoint maximum # of allocated
  921. // packets, so a flood of incoming data on 1 endpoint
  922. // doesn't starve the others if the user isn't reading
  923. // it regularly
  924. packet = usb_malloc();
  925. if (packet) {
  926. b->addr = packet->buf;
  927. b->desc = BDT_DESC(64,
  928. ((uint32_t)b & 8) ? DATA1 : DATA0);
  929. } else {
  930. //serial_print("starving ");
  931. //serial_phex(endpoint + 1);
  932. b->desc = 0;
  933. usb_rx_memory_needed++;
  934. }
  935. } else {
  936. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  937. }
  938. }
  939. }
  940. USB0_ISTAT = USB_ISTAT_TOKDNE;
  941. goto restart;
  942. }
  943. if (status & USB_ISTAT_USBRST /* 01 */ ) {
  944. //serial_print("reset\n");
  945. // initialize BDT toggle bits
  946. USB0_CTL = USB_CTL_ODDRST;
  947. ep0_tx_bdt_bank = 0;
  948. // set up buffers to receive Setup and OUT packets
  949. table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
  950. table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
  951. table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
  952. table[index(0, RX, ODD)].addr = ep0_rx1_buf;
  953. table[index(0, TX, EVEN)].desc = 0;
  954. table[index(0, TX, ODD)].desc = 0;
  955. // activate endpoint 0
  956. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  957. // clear all ending interrupts
  958. USB0_ERRSTAT = 0xFF;
  959. USB0_ISTAT = 0xFF;
  960. // set the address to zero during enumeration
  961. USB0_ADDR = 0;
  962. // enable other interrupts
  963. USB0_ERREN = 0xFF;
  964. USB0_INTEN = USB_INTEN_TOKDNEEN |
  965. USB_INTEN_SOFTOKEN |
  966. USB_INTEN_STALLEN |
  967. USB_INTEN_ERROREN |
  968. USB_INTEN_USBRSTEN |
  969. USB_INTEN_SLEEPEN;
  970. // is this necessary?
  971. USB0_CTL = USB_CTL_USBENSOFEN;
  972. return;
  973. }
  974. if ((status & USB_ISTAT_STALL /* 80 */ )) {
  975. //serial_print("stall:\n");
  976. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  977. USB0_ISTAT = USB_ISTAT_STALL;
  978. }
  979. if ((status & USB_ISTAT_ERROR /* 02 */ )) {
  980. uint8_t err = USB0_ERRSTAT;
  981. USB0_ERRSTAT = err;
  982. //serial_print("err:");
  983. //serial_phex(err);
  984. //serial_print("\n");
  985. USB0_ISTAT = USB_ISTAT_ERROR;
  986. }
  987. if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
  988. //serial_print("sleep\n");
  989. USB0_ISTAT = USB_ISTAT_SLEEP;
  990. }
  991. }
  992. void usb_init(void)
  993. {
  994. int i;
  995. //serial_begin(BAUD2DIV(115200));
  996. //serial_print("usb_init\n");
  997. usb_init_serialnumber();
  998. for (i=0; i <= NUM_ENDPOINTS*4; i++) {
  999. table[i].desc = 0;
  1000. table[i].addr = 0;
  1001. }
  1002. // this basically follows the flowchart in the Kinetis
  1003. // Quick Reference User Guide, Rev. 1, 03/2012, page 141
  1004. // assume 48 MHz clock already running
  1005. // SIM - enable clock
  1006. SIM_SCGC4 |= SIM_SCGC4_USBOTG;
  1007. #ifdef HAS_KINETIS_MPU
  1008. MPU_RGDAAC0 |= 0x03000000;
  1009. #endif
  1010. #if F_CPU == 180000000 || F_CPU == 216000000
  1011. // if using IRC48M, turn on the USB clock recovery hardware
  1012. USB0_CLK_RECOVER_IRC_EN = USB_CLK_RECOVER_IRC_EN_IRC_EN | USB_CLK_RECOVER_IRC_EN_REG_EN;
  1013. USB0_CLK_RECOVER_CTRL = USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN |
  1014. USB_CLK_RECOVER_CTRL_RESTART_IFRTRIM_EN;
  1015. #endif
  1016. // reset USB module
  1017. //USB0_USBTRC0 = USB_USBTRC_USBRESET;
  1018. //while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
  1019. // set desc table base addr
  1020. USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
  1021. USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
  1022. USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
  1023. // clear all ISR flags
  1024. USB0_ISTAT = 0xFF;
  1025. USB0_ERRSTAT = 0xFF;
  1026. USB0_OTGISTAT = 0xFF;
  1027. //USB0_USBTRC0 |= 0x40; // undocumented bit
  1028. // enable USB
  1029. USB0_CTL = USB_CTL_USBENSOFEN;
  1030. USB0_USBCTRL = 0;
  1031. // enable reset interrupt
  1032. USB0_INTEN = USB_INTEN_USBRSTEN;
  1033. // enable interrupt in NVIC...
  1034. NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
  1035. NVIC_ENABLE_IRQ(IRQ_USBOTG);
  1036. // enable d+ pullup
  1037. USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
  1038. }
  1039. #else // F_CPU < 20 MHz && defined(NUM_ENDPOINTS)
  1040. void usb_init(void)
  1041. {
  1042. }
  1043. #endif // F_CPU >= 20 MHz && defined(NUM_ENDPOINTS)