Teensy 4.1 core updated for C++20
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

454 rindas
13KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. //#include "HardwareSerial.h"
  32. static uint8_t calibrating;
  33. static uint8_t analog_right_shift = 0;
  34. static uint8_t analog_config_bits = 10;
  35. static uint8_t analog_num_average = 4;
  36. static uint8_t analog_reference_internal = 0;
  37. // the alternate clock is connected to OSCERCLK (16 MHz).
  38. // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
  39. // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
  40. #if F_BUS == 60000000
  41. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz
  42. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  43. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  44. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  45. #elif F_BUS == 56000000
  46. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz
  47. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  48. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  49. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  50. #elif F_BUS == 48000000
  51. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  52. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  53. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  54. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz
  55. #elif F_BUS == 40000000
  56. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  57. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  58. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  59. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz
  60. #elif F_BUS == 36000000
  61. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz
  62. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  63. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  64. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  65. #elif F_BUS == 24000000
  66. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  67. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  68. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  69. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz
  70. #elif F_BUS == 4000000
  71. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  72. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  73. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  74. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  75. #elif F_BUS == 2000000
  76. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  77. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  78. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  79. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  80. #else
  81. #error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz"
  82. #endif
  83. void analog_init(void)
  84. {
  85. uint32_t num;
  86. VREF_TRM = 0x60;
  87. VREF_SC = 0xE1; // enable 1.2 volt ref
  88. if (analog_config_bits == 8) {
  89. ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  90. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  91. #if defined(__MK20DX256__)
  92. ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  93. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  94. #endif
  95. } else if (analog_config_bits == 10) {
  96. ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  97. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  98. #if defined(__MK20DX256__)
  99. ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  100. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  101. #endif
  102. } else if (analog_config_bits == 12) {
  103. ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  104. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  105. #if defined(__MK20DX256__)
  106. ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  107. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  108. #endif
  109. } else {
  110. ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  111. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  112. #if defined(__MK20DX256__)
  113. ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  114. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  115. #endif
  116. }
  117. if (analog_reference_internal) {
  118. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  119. #if defined(__MK20DX256__)
  120. ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  121. #endif
  122. } else {
  123. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  124. #if defined(__MK20DX256__)
  125. ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  126. #endif
  127. }
  128. num = analog_num_average;
  129. if (num <= 1) {
  130. ADC0_SC3 = ADC_SC3_CAL; // begin cal
  131. #if defined(__MK20DX256__)
  132. ADC1_SC3 = ADC_SC3_CAL; // begin cal
  133. #endif
  134. } else if (num <= 4) {
  135. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  136. #if defined(__MK20DX256__)
  137. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  138. #endif
  139. } else if (num <= 8) {
  140. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  141. #if defined(__MK20DX256__)
  142. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  143. #endif
  144. } else if (num <= 16) {
  145. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  146. #if defined(__MK20DX256__)
  147. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  148. #endif
  149. } else {
  150. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  151. #if defined(__MK20DX256__)
  152. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  153. #endif
  154. }
  155. calibrating = 1;
  156. }
  157. static void wait_for_cal(void)
  158. {
  159. uint16_t sum;
  160. //serial_print("wait_for_cal\n");
  161. #if defined(__MK20DX128__)
  162. while (ADC0_SC3 & ADC_SC3_CAL) {
  163. // wait
  164. }
  165. #elif defined(__MK20DX256__)
  166. while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
  167. // wait
  168. }
  169. #endif
  170. __disable_irq();
  171. if (calibrating) {
  172. //serial_print("\n");
  173. sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
  174. sum = (sum / 2) | 0x8000;
  175. ADC0_PG = sum;
  176. //serial_print("ADC0_PG = ");
  177. //serial_phex16(sum);
  178. //serial_print("\n");
  179. sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
  180. sum = (sum / 2) | 0x8000;
  181. ADC0_MG = sum;
  182. //serial_print("ADC0_MG = ");
  183. //serial_phex16(sum);
  184. //serial_print("\n");
  185. #if defined(__MK20DX256__)
  186. sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
  187. sum = (sum / 2) | 0x8000;
  188. ADC1_PG = sum;
  189. sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
  190. sum = (sum / 2) | 0x8000;
  191. ADC1_MG = sum;
  192. #endif
  193. calibrating = 0;
  194. }
  195. __enable_irq();
  196. }
  197. // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
  198. // VREFH/VREFL - connected as the primary reference option
  199. // 1.2 V VREF_OUT - connected as the VALT reference option
  200. #define DEFAULT 0
  201. #define INTERNAL 2
  202. #define INTERNAL1V2 2
  203. #define INTERNAL1V1 2
  204. #define EXTERNAL 0
  205. void analogReference(uint8_t type)
  206. {
  207. if (type) {
  208. // internal reference requested
  209. if (!analog_reference_internal) {
  210. analog_reference_internal = 1;
  211. if (calibrating) {
  212. ADC0_SC3 = 0; // cancel cal
  213. #if defined(__MK20DX256__)
  214. ADC1_SC3 = 0; // cancel cal
  215. #endif
  216. }
  217. analog_init();
  218. }
  219. } else {
  220. // vcc or external reference requested
  221. if (analog_reference_internal) {
  222. analog_reference_internal = 0;
  223. if (calibrating) {
  224. ADC0_SC3 = 0; // cancel cal
  225. #if defined(__MK20DX256__)
  226. ADC1_SC3 = 0; // cancel cal
  227. #endif
  228. }
  229. analog_init();
  230. }
  231. }
  232. }
  233. void analogReadRes(unsigned int bits)
  234. {
  235. unsigned int config;
  236. if (bits >= 13) {
  237. if (bits > 16) bits = 16;
  238. config = 16;
  239. } else if (bits >= 11) {
  240. config = 12;
  241. } else if (bits >= 9) {
  242. config = 10;
  243. } else {
  244. config = 8;
  245. }
  246. analog_right_shift = config - bits;
  247. if (config != analog_config_bits) {
  248. analog_config_bits = config;
  249. if (calibrating) ADC0_SC3 = 0; // cancel cal
  250. analog_init();
  251. }
  252. }
  253. void analogReadAveraging(unsigned int num)
  254. {
  255. if (calibrating) wait_for_cal();
  256. if (num <= 1) {
  257. num = 0;
  258. ADC0_SC3 = 0;
  259. } else if (num <= 4) {
  260. num = 4;
  261. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  262. } else if (num <= 8) {
  263. num = 8;
  264. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  265. } else if (num <= 16) {
  266. num = 16;
  267. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  268. } else {
  269. num = 32;
  270. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  271. }
  272. analog_num_average = num;
  273. }
  274. // The SC1A register is used for both software and hardware trigger modes of operation.
  275. #if defined(__MK20DX128__)
  276. static const uint8_t channel2sc1a[] = {
  277. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  278. 0, 19, 3, 21, 26, 22, 23
  279. };
  280. #elif defined(__MK20DX256__)
  281. static const uint8_t channel2sc1a[] = {
  282. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  283. 0, 19, 3, 19+128, 26, 18+128, 23,
  284. 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
  285. // A15 26 E1 ADC1_SE5a 5+64
  286. // A16 27 C9 ADC1_SE5b 5
  287. // A17 28 C8 ADC1_SE4b 4
  288. // A18 29 C10 ADC1_SE6b 6
  289. // A19 30 C11 ADC1_SE7b 7
  290. // A20 31 E0 ADC1_SE4a 4+64
  291. };
  292. #endif
  293. // TODO: perhaps this should store the NVIC priority, so it works recursively?
  294. static volatile uint8_t analogReadBusyADC0 = 0;
  295. #if defined(__MK20DX256__)
  296. static volatile uint8_t analogReadBusyADC1 = 0;
  297. #endif
  298. int analogRead(uint8_t pin)
  299. {
  300. int result;
  301. uint8_t index, channel;
  302. //serial_phex(pin);
  303. //serial_print(" ");
  304. if (pin <= 13) {
  305. index = pin; // 0-13 refer to A0-A13
  306. } else if (pin <= 23) {
  307. index = pin - 14; // 14-23 are A0-A9
  308. #if defined(__MK20DX256__)
  309. } else if (pin >= 26 && pin <= 31) {
  310. index = pin - 9; // 26-31 are A15-A20
  311. #endif
  312. } else if (pin >= 34 && pin <= 40) {
  313. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  314. // 39 is vref, 40 is unused (A14 on Teensy 3.1)
  315. } else {
  316. return 0; // all others are invalid
  317. }
  318. //serial_phex(index);
  319. //serial_print(" ");
  320. channel = channel2sc1a[index];
  321. //serial_phex(channel);
  322. //serial_print(" ");
  323. //serial_print("analogRead");
  324. //return 0;
  325. if (calibrating) wait_for_cal();
  326. //pin = 5; // PTD1/SE5b, pin 14, analog 0
  327. #if defined(__MK20DX256__)
  328. if (channel & 0x80) goto beginADC1;
  329. #endif
  330. __disable_irq();
  331. startADC0:
  332. //serial_print("startADC0\n");
  333. ADC0_SC1A = channel;
  334. analogReadBusyADC0 = 1;
  335. __enable_irq();
  336. while (1) {
  337. __disable_irq();
  338. if ((ADC0_SC1A & ADC_SC1_COCO)) {
  339. result = ADC0_RA;
  340. analogReadBusyADC0 = 0;
  341. __enable_irq();
  342. result >>= analog_right_shift;
  343. return result;
  344. }
  345. // detect if analogRead was used from an interrupt
  346. // if so, our analogRead got canceled, so it must
  347. // be restarted.
  348. if (!analogReadBusyADC0) goto startADC0;
  349. __enable_irq();
  350. yield();
  351. }
  352. #if defined(__MK20DX256__)
  353. beginADC1:
  354. __disable_irq();
  355. startADC1:
  356. //serial_print("startADC0\n");
  357. // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
  358. if (channel & 0x40) {
  359. ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
  360. } else {
  361. ADC1_CFG2 |= ADC_CFG2_MUXSEL;
  362. }
  363. ADC1_SC1A = channel & 0x3F;
  364. analogReadBusyADC1 = 1;
  365. __enable_irq();
  366. while (1) {
  367. __disable_irq();
  368. if ((ADC1_SC1A & ADC_SC1_COCO)) {
  369. result = ADC1_RA;
  370. analogReadBusyADC1 = 0;
  371. __enable_irq();
  372. result >>= analog_right_shift;
  373. return result;
  374. }
  375. // detect if analogRead was used from an interrupt
  376. // if so, our analogRead got canceled, so it must
  377. // be restarted.
  378. if (!analogReadBusyADC1) goto startADC1;
  379. __enable_irq();
  380. yield();
  381. }
  382. #endif
  383. }
  384. void analogWriteDAC0(int val)
  385. {
  386. #if defined(__MK20DX256__)
  387. SIM_SCGC2 |= SIM_SCGC2_DAC0;
  388. if (analog_reference_internal) {
  389. DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
  390. } else {
  391. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
  392. }
  393. if (val < 0) val = 0; // TODO: saturate instruction?
  394. else if (val > 4095) val = 4095;
  395. *(int16_t *)&(DAC0_DAT0L) = val;
  396. #endif
  397. }