|
- #ifndef DMAChannel_h_
- #define DMAChannel_h_
-
- #include "kinetis.h"
-
- // Discussion about DMAChannel is here:
- // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
-
- #define DMACHANNEL_HAS_BEGIN
- #define DMACHANNEL_HAS_BOOLEAN_CTOR
-
-
- // The channel allocation bitmask is accessible from "C" namespace,
- // so C-only code can reserve DMA channels
- #ifdef __cplusplus
- extern "C" {
- #endif
- extern uint16_t dma_channel_allocated_mask;
- #ifdef __cplusplus
- }
- #endif
-
-
- #ifdef __cplusplus
-
- // known libraries with DMA usage (in need of porting to this new scheme):
- //
- // https://github.com/PaulStoffregen/Audio
- // https://github.com/PaulStoffregen/OctoWS2811
- // https://github.com/pedvide/ADC
- // https://github.com/duff2013/SerialEvent
- // https://github.com/pixelmatix/SmartMatrix
- // https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme
-
-
- /****************************************************************/
- /** Teensy 3.0 & 3.1 **/
- /****************************************************************/
- #if defined(KINETISK)
-
-
- class DMABaseClass {
- public:
- typedef struct __attribute__((packed, aligned(4))) {
- volatile const void * volatile SADDR;
- int16_t SOFF;
- union { uint16_t ATTR;
- struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
- union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
- uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
- int32_t SLAST;
- volatile void * volatile DADDR;
- int16_t DOFF;
- union { volatile uint16_t CITER;
- volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
- int32_t DLASTSGA;
- volatile uint16_t CSR;
- union { volatile uint16_t BITER;
- volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
- } TCD_t;
- TCD_t *TCD;
-
- /***************************************/
- /** Data Transfer **/
- /***************************************/
-
- // Use a single variable as the data source. Typically a register
- // for receiving data from one of the hardware peripherals is used.
- void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
- void source(volatile const unsigned char &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 0;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
- TCD->SLAST = 0;
- }
- void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
- void source(volatile const unsigned short &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 1;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
- TCD->SLAST = 0;
- }
- void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned long &p) {
- TCD->SADDR = &p;
- TCD->SOFF = 0;
- TCD->ATTR_SRC = 2;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
- TCD->SLAST = 0;
- }
-
- // Use a buffer (array of data) as the data source. Typically a
- // buffer for transmitting data is used.
- void sourceBuffer(volatile const signed char p[], unsigned int len) {
- sourceBuffer((volatile const uint8_t *)p, len); }
- void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 1;
- TCD->ATTR_SRC = 0;
- TCD->NBYTES = 1;
- TCD->SLAST = -len;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void sourceBuffer(volatile const signed short p[], unsigned int len) {
- sourceBuffer((volatile const uint16_t *)p, len); }
- void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 2;
- TCD->ATTR_SRC = 1;
- TCD->NBYTES = 2;
- TCD->SLAST = -len;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void sourceBuffer(volatile const signed int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const signed long p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 4;
- TCD->ATTR_SRC = 2;
- TCD->NBYTES = 4;
- TCD->SLAST = -len;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a circular buffer as the data source
- void sourceCircular(volatile const signed char p[], unsigned int len) {
- sourceCircular((volatile const uint8_t *)p, len); }
- void sourceCircular(volatile const unsigned char p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 1;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
- TCD->NBYTES = 1;
- TCD->SLAST = 0;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void sourceCircular(volatile const signed short p[], unsigned int len) {
- sourceCircular((volatile const uint16_t *)p, len); }
- void sourceCircular(volatile const unsigned short p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 2;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
- TCD->NBYTES = 2;
- TCD->SLAST = 0;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void sourceCircular(volatile const signed int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const signed long p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned long p[], unsigned int len) {
- TCD->SADDR = p;
- TCD->SOFF = 4;
- TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
- TCD->NBYTES = 4;
- TCD->SLAST = 0;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a single variable as the data destination. Typically a register
- // for transmitting data to one of the hardware peripherals is used.
- void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
- void destination(volatile unsigned char &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 0;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
- TCD->DLASTSGA = 0;
- }
- void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
- void destination(volatile unsigned short &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 1;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
- TCD->DLASTSGA = 0;
- }
- void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned long &p) {
- TCD->DADDR = &p;
- TCD->DOFF = 0;
- TCD->ATTR_DST = 2;
- if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
- TCD->DLASTSGA = 0;
- }
-
- // Use a buffer (array of data) as the data destination. Typically a
- // buffer for receiving data is used.
- void destinationBuffer(volatile signed char p[], unsigned int len) {
- destinationBuffer((volatile uint8_t *)p, len); }
- void destinationBuffer(volatile unsigned char p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 1;
- TCD->ATTR_DST = 0;
- TCD->NBYTES = 1;
- TCD->DLASTSGA = -len;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void destinationBuffer(volatile signed short p[], unsigned int len) {
- destinationBuffer((volatile uint16_t *)p, len); }
- void destinationBuffer(volatile unsigned short p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 2;
- TCD->ATTR_DST = 1;
- TCD->NBYTES = 2;
- TCD->DLASTSGA = -len;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void destinationBuffer(volatile signed int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile signed long p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned long p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 4;
- TCD->ATTR_DST = 2;
- TCD->NBYTES = 4;
- TCD->DLASTSGA = -len;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- // Use a circular buffer as the data destination
- void destinationCircular(volatile signed char p[], unsigned int len) {
- destinationCircular((volatile uint8_t *)p, len); }
- void destinationCircular(volatile unsigned char p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 1;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3);
- TCD->NBYTES = 1;
- TCD->DLASTSGA = 0;
- TCD->BITER = len;
- TCD->CITER = len;
- }
- void destinationCircular(volatile signed short p[], unsigned int len) {
- destinationCircular((volatile uint16_t *)p, len); }
- void destinationCircular(volatile unsigned short p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 2;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
- TCD->NBYTES = 2;
- TCD->DLASTSGA = 0;
- TCD->BITER = len / 2;
- TCD->CITER = len / 2;
- }
- void destinationCircular(volatile signed int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile signed long p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned long p[], unsigned int len) {
- TCD->DADDR = p;
- TCD->DOFF = 4;
- TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
- TCD->NBYTES = 4;
- TCD->DLASTSGA = 0;
- TCD->BITER = len / 4;
- TCD->CITER = len / 4;
- }
-
- /*************************************************/
- /** Quantity of Data to Transfer **/
- /*************************************************/
-
- // Set the data size used for each triggered transfer
- void transferSize(unsigned int len) {
- if (len == 16) {
- TCD->NBYTES = 16;
- if (TCD->SOFF != 0) TCD->SOFF = 16;
- if (TCD->DOFF != 0) TCD->DOFF = 16;
- TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0404;
- } else if (len == 4) {
- TCD->NBYTES = 4;
- if (TCD->SOFF != 0) TCD->SOFF = 4;
- if (TCD->DOFF != 0) TCD->DOFF = 4;
- TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202;
- } else if (len == 2) {
- TCD->NBYTES = 2;
- if (TCD->SOFF != 0) TCD->SOFF = 2;
- if (TCD->DOFF != 0) TCD->DOFF = 2;
- TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101;
- } else {
- TCD->NBYTES = 1;
- if (TCD->SOFF != 0) TCD->SOFF = 1;
- if (TCD->DOFF != 0) TCD->DOFF = 1;
- TCD->ATTR = TCD->ATTR & 0xF8F8;
- }
- }
-
- // Set the number of transfers (number of triggers until complete)
- void transferCount(unsigned int len) {
- if (!(TCD->BITER & DMA_TCD_BITER_ELINK)) {
- if (len > 32767) return;
- TCD->BITER = len;
- TCD->CITER = len;
- } else {
- if (len > 511) return;
- TCD->BITER = (TCD->BITER & 0xFE00) | len;
- TCD->CITER = (TCD->CITER & 0xFE00) | len;
- }
- }
-
- /*************************************************/
- /** Special Options / Features **/
- /*************************************************/
-
- void interruptAtCompletion(void) {
- TCD->CSR |= DMA_TCD_CSR_INTMAJOR;
- }
-
- void interruptAtHalf(void) {
- TCD->CSR |= DMA_TCD_CSR_INTHALF;
- }
-
- void disableOnCompletion(void) {
- TCD->CSR |= DMA_TCD_CSR_DREQ;
- }
-
- void replaceSettingsOnCompletion(const DMABaseClass &settings) {
- TCD->DLASTSGA = (int32_t)(settings.TCD);
- TCD->CSR &= ~DMA_TCD_CSR_DONE;
- TCD->CSR |= DMA_TCD_CSR_ESG;
- }
-
- protected:
- // users should not be able to create instances of DMABaseClass, which
- // require the inheriting class to initialize the TCD pointer.
- DMABaseClass() {}
-
- static inline void copy_tcd(TCD_t *dst, const TCD_t *src) {
- const uint32_t *p = (const uint32_t *)src;
- uint32_t *q = (uint32_t *)dst;
- uint32_t t1, t2, t3, t4;
- t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
- *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
- t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
- *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
- }
- };
-
-
- // DMASetting represents settings stored only in memory, which can be
- // applied to any DMA channel.
-
- class DMASetting : public DMABaseClass {
- public:
- DMASetting() {
- TCD = &tcddata;
- }
- DMASetting(const DMASetting &c) {
- TCD = &tcddata;
- *this = c;
- }
- DMASetting(const DMABaseClass &c) {
- TCD = &tcddata;
- *this = c;
- }
- DMASetting & operator = (const DMABaseClass &rhs) {
- copy_tcd(TCD, rhs.TCD);
- return *this;
- }
- private:
- TCD_t tcddata __attribute__((aligned(32)));
- };
-
-
- // DMAChannel reprents an actual DMA channel and its current settings
-
- class DMAChannel : public DMABaseClass {
- public:
- /*************************************************/
- /** Channel Allocation **/
- /*************************************************/
-
- DMAChannel() {
- begin();
- }
- DMAChannel(const DMAChannel &c) {
- TCD = c.TCD;
- channel = c.channel;
- }
- DMAChannel(const DMASetting &c) {
- begin();
- copy_tcd(TCD, c.TCD);
- }
- DMAChannel(bool allocate) {
- if (allocate) begin();
- }
- DMAChannel & operator = (const DMAChannel &rhs) {
- if (channel != rhs.channel) {
- release();
- TCD = rhs.TCD;
- channel = rhs.channel;
- }
- return *this;
- }
- DMAChannel & operator = (const DMASetting &rhs) {
- copy_tcd(TCD, rhs.TCD);
- return *this;
- }
- ~DMAChannel() {
- release();
- }
- void begin(bool force_initialization = false);
- private:
- void release(void);
-
- public:
- /***************************************/
- /** Triggering **/
- /***************************************/
-
- // Triggers cause the DMA channel to actually move data. Each
- // trigger moves a single data unit, which is typically 8, 16 or
- // 32 bits. If a channel is configured for 200 transfers
-
- // Use a hardware trigger to make the DMA channel run
- void triggerAtHardwareEvent(uint8_t source) {
- volatile uint8_t *mux;
- mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
- *mux = 0;
- *mux = (source & 63) | DMAMUX_ENABLE;
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger after each transfer is makes, except
- // the its last transfer. This effectively makes the 2
- // channels run in parallel until the last transfer
- void triggerAtTransfersOf(DMABaseClass &ch) {
- ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
- | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
- ch.TCD->CITER = ch.TCD->BITER ;
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger when the other channel completes.
- void triggerAtCompletionOf(DMABaseClass &ch) {
- ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE))
- | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
- }
-
- // Cause this DMA channel to be continuously triggered, so
- // it will move data as rapidly as possible, without waiting.
- // Normally this would be used with disableOnCompletion().
- void triggerContinuously(void) {
- volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
- mux[channel] = 0;
- #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
- mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
- #else
- // search for an unused "always on" source
- unsigned int i = DMAMUX_SOURCE_ALWAYS0;
- for (i = DMAMUX_SOURCE_ALWAYS0;
- i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
- unsigned int ch;
- for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
- if (mux[ch] == i) break;
- }
- if (ch >= DMA_NUM_CHANNELS) {
- mux[channel] = (i | DMAMUX_ENABLE);
- return;
- }
- }
- #endif
- }
-
- // Manually trigger the DMA channel.
- void triggerManual(void) {
- DMA_SSRT = channel;
- }
-
-
- /***************************************/
- /** Interrupts **/
- /***************************************/
-
- // An interrupt routine can be run when the DMA channel completes
- // the entire transfer, and also optionally when half of the
- // transfer is completed.
- void attachInterrupt(void (*isr)(void)) {
- _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
- NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void detachInterrupt(void) {
- NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void clearInterrupt(void) {
- DMA_CINT = channel;
- }
-
-
- /***************************************/
- /** Enable / Disable **/
- /***************************************/
-
- void enable(void) {
- DMA_SERQ = channel;
- }
- void disable(void) {
- DMA_CERQ = channel;
- }
-
- /***************************************/
- /** Status **/
- /***************************************/
-
- bool complete(void) {
- if (TCD->CSR & DMA_TCD_CSR_DONE) return true;
- return false;
- }
- void clearComplete(void) {
- DMA_CDNE = channel;
- }
- bool error(void) {
- if (DMA_ERR & (1<<channel)) return true;
- return false;
- }
- void clearError(void) {
- DMA_CERR = channel;
- }
- void * sourceAddress(void) {
- return (void *)(TCD->SADDR);
- }
- void * destinationAddress(void) {
- return (void *)(TCD->DADDR);
- }
-
- /***************************************/
- /** Direct Hardware Access **/
- /***************************************/
-
- // For complex and unusual configurations not possible with the above
- // functions, the Transfer Control Descriptor (TCD) and channel number
- // can be used directly. This leads to less portable and less readable
- // code, but direct control of all parameters is possible.
- uint8_t channel;
- // TCD is accessible due to inheritance from DMABaseClass
- };
-
- // arrange the relative priority of 2 or more DMA channels
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- /****************************************************************/
- /** Teensy-LC **/
- /****************************************************************/
- #elif defined(KINETISL)
-
-
- class DMABaseClass {
- public:
- typedef struct __attribute__((packed, aligned(4))) {
- volatile const void * volatile SAR;
- volatile void * volatile DAR;
- volatile uint32_t DSR_BCR;
- volatile uint32_t DCR;
- } CFG_t;
- CFG_t *CFG;
-
- /***************************************/
- /** Data Transfer **/
- /***************************************/
-
- // Use a single variable as the data source. Typically a register
- // for receiving data from one of the hardware peripherals is used.
- void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
- void source(volatile const unsigned char &p) {
- CFG->SAR = &p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1);
- }
- void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
- void source(volatile const unsigned short &p) {
- CFG->SAR = &p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2);
- }
- void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
- void source(volatile const unsigned long &p) {
- CFG->SAR = &p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0);
- }
-
- // Use a buffer (array of data) as the data source. Typically a
- // buffer for transmitting data is used.
- void sourceBuffer(volatile const signed char p[], unsigned int len) {
- sourceBuffer((volatile const uint8_t *)p, len); }
- void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
- if (len > 0xFFFFF) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC;
- CFG->DSR_BCR = len;
- }
- void sourceBuffer(volatile const signed short p[], unsigned int len) {
- sourceBuffer((volatile const uint16_t *)p, len); }
- void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
- if (len > 0xFFFFF) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC;
- CFG->DSR_BCR = len;
- }
- void sourceBuffer(volatile const signed int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const signed long p[], unsigned int len) {
- sourceBuffer((volatile const uint32_t *)p, len); }
- void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
- if (len > 0xFFFFF) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC;
- CFG->DSR_BCR = len;
- }
-
- // Use a circular buffer as the data source
- void sourceCircular(volatile const signed char p[], unsigned int len) {
- sourceCircular((volatile const uint8_t *)p, len); }
- void sourceCircular(volatile const unsigned char p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC
- | DMA_DCR_SMOD(mod);
- CFG->DSR_BCR = len;
- }
- void sourceCircular(volatile const signed short p[], unsigned int len) {
- sourceCircular((volatile const uint16_t *)p, len); }
- void sourceCircular(volatile const unsigned short p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC
- | DMA_DCR_SMOD(mod);
- CFG->DSR_BCR = len;
- }
- void sourceCircular(volatile const signed int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned int p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const signed long p[], unsigned int len) {
- sourceCircular((volatile const uint32_t *)p, len); }
- void sourceCircular(volatile const unsigned long p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->SAR = p;
- CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC
- | DMA_DCR_SMOD(mod);
- CFG->DSR_BCR = len;
- }
-
- // Use a single variable as the data destination. Typically a register
- // for transmitting data to one of the hardware peripherals is used.
- void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
- void destination(volatile unsigned char &p) {
- CFG->DAR = &p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1);
- }
- void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
- void destination(volatile unsigned short &p) {
- CFG->DAR = &p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2);
- }
- void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
- void destination(volatile unsigned long &p) {
- CFG->DAR = &p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0);
- }
-
- // Use a buffer (array of data) as the data destination. Typically a
- // buffer for receiving data is used.
- void destinationBuffer(volatile signed char p[], unsigned int len) {
- destinationBuffer((volatile uint8_t *)p, len); }
- void destinationBuffer(volatile unsigned char p[], unsigned int len) {
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC;
- CFG->DSR_BCR = len;
- }
- void destinationBuffer(volatile signed short p[], unsigned int len) {
- destinationBuffer((volatile uint16_t *)p, len); }
- void destinationBuffer(volatile unsigned short p[], unsigned int len) {
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2) | DMA_DCR_DINC;
- CFG->DSR_BCR = len;
- }
- void destinationBuffer(volatile signed int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned int p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile signed long p[], unsigned int len) {
- destinationBuffer((volatile uint32_t *)p, len); }
- void destinationBuffer(volatile unsigned long p[], unsigned int len) {
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0) | DMA_DCR_DINC;
- CFG->DSR_BCR = len;
- }
-
- // Use a circular buffer as the data destination
- void destinationCircular(volatile signed char p[], unsigned int len) {
- destinationCircular((volatile uint8_t *)p, len); }
- void destinationCircular(volatile unsigned char p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC
- | DMA_DCR_DMOD(mod);
- CFG->DSR_BCR = len;
- }
- void destinationCircular(volatile signed short p[], unsigned int len) {
- destinationCircular((volatile uint16_t *)p, len); }
- void destinationCircular(volatile unsigned short p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC
- | DMA_DCR_DMOD(mod);
- CFG->DSR_BCR = len;
- }
- void destinationCircular(volatile signed int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned int p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile signed long p[], unsigned int len) {
- destinationCircular((volatile uint32_t *)p, len); }
- void destinationCircular(volatile unsigned long p[], unsigned int len) {
- uint32_t mod = len2mod(len);
- if (mod == 0) return;
- CFG->DAR = p;
- CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC
- | DMA_DCR_DMOD(mod);
- CFG->DSR_BCR = len;
- }
-
- /*************************************************/
- /** Quantity of Data to Transfer **/
- /*************************************************/
-
- // Set the data size used for each triggered transfer
- void transferSize(unsigned int len) {
- uint32_t dcr = CFG->DCR & 0xF0C8FFFF;
- if (len == 4) {
- CFG->DCR = dcr | DMA_DCR_DSIZE(0) | DMA_DCR_DSIZE(0);
- } else if (len == 2) {
- CFG->DCR = dcr | DMA_DCR_DSIZE(2) | DMA_DCR_DSIZE(2);
- } else {
- CFG->DCR = dcr | DMA_DCR_DSIZE(1) | DMA_DCR_DSIZE(1);
- }
- }
-
- // Set the number of transfers (number of triggers until complete)
- void transferCount(unsigned int len) {
- uint32_t s, d, n = 0; // 0 = 8 bit, 1 = 16 bit, 2 = 32 bit
- uint32_t dcr = CFG->DCR;
- s = (dcr >> 20) & 3;
- d = (dcr >> 17) & 3;
- if (s == 0 || d == 0) n = 2;
- else if (s == 2 || d == 2) n = 1;
- CFG->DSR_BCR = len << n;
- }
-
- /*************************************************/
- /** Special Options / Features **/
- /*************************************************/
-
- void interruptAtCompletion(void) {
- CFG->DCR |= DMA_DCR_EINT;
- }
-
- void disableOnCompletion(void) {
- CFG->DCR |= DMA_DCR_D_REQ;
- }
-
- // Kinetis-L DMA does not have these features :-(
- //
- // void interruptAtHalf(void) {}
- // void replaceSettingsOnCompletion(const DMABaseClass &settings) {};
- // TODO: can a 2nd linked channel be used to emulate this?
-
- protected:
- // users should not be able to create instances of DMABaseClass, which
- // require the inheriting class to initialize the TCD pointer.
- DMABaseClass() {}
-
- static inline void copy_cfg(CFG_t *dst, const CFG_t *src) {
- dst->SAR = src->SAR;
- dst->DAR = src->DAR;
- dst->DSR_BCR = src->DSR_BCR;
- dst->DCR = src->DCR;
- }
- private:
- static inline uint32_t len2mod(uint32_t len) {
- if (len < 16) return 0;
- if (len < 32) return 1;
- if (len < 64) return 2;
- if (len < 128) return 3;
- if (len < 256) return 4;
- if (len < 512) return 5;
- if (len < 1024) return 6;
- if (len < 2048) return 7;
- if (len < 4096) return 8;
- if (len < 8192) return 9;
- if (len < 16384) return 10;
- if (len < 32768) return 11;
- if (len < 65536) return 12;
- if (len < 131072) return 13;
- if (len < 262144) return 14;
- return 15;
- }
- };
-
-
- // DMASetting represents settings stored only in memory, which can be
- // applied to any DMA channel.
-
- class DMASetting : public DMABaseClass {
- public:
- DMASetting() {
- cfgdata.SAR = NULL;
- cfgdata.DAR = NULL;
- cfgdata.DSR_BCR = 0;
- cfgdata.DCR = DMA_DCR_CS;
- CFG = &cfgdata;
- }
- DMASetting(const DMASetting &c) {
- CFG = &cfgdata;
- *this = c;
- }
- DMASetting(const DMABaseClass &c) {
- CFG = &cfgdata;
- *this = c;
- }
- DMASetting & operator = (const DMABaseClass &rhs) {
- copy_cfg(CFG, rhs.CFG);
- return *this;
- }
- private:
- CFG_t cfgdata __attribute__((aligned(4)));
- };
-
-
- // DMAChannel reprents an actual DMA channel and its current settings
-
- class DMAChannel : public DMABaseClass {
- public:
- /*************************************************/
- /** Channel Allocation **/
- /*************************************************/
-
- DMAChannel() {
- begin();
- }
- DMAChannel(const DMAChannel &c) {
- CFG = c.CFG;
- channel = c.channel;
- }
- DMAChannel(const DMASetting &c) {
- begin();
- copy_cfg(CFG, c.CFG);
- }
- DMAChannel(bool allocate) {
- if (allocate) begin();
- }
- DMAChannel & operator = (const DMAChannel &rhs) {
- if (channel != rhs.channel) {
- release();
- CFG = rhs.CFG;
- channel = rhs.channel;
- }
- return *this;
- }
- DMAChannel & operator = (const DMASetting &rhs) {
- copy_cfg(CFG, rhs.CFG);
- return *this;
- }
- ~DMAChannel() {
- release();
- }
- void begin(bool force_initialization = false);
- private:
- void release(void);
-
- public:
- /***************************************/
- /** Triggering **/
- /***************************************/
-
- // Triggers cause the DMA channel to actually move data. Each
- // trigger moves a single data unit, which is typically 8, 16 or
- // 32 bits. If a channel is configured for 200 transfers
-
- // Use a hardware trigger to make the DMA channel run
- void triggerAtHardwareEvent(uint8_t source) {
- volatile uint8_t *mux;
- CFG->DCR |= DMA_DCR_CS;
- mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
- *mux = 0;
- *mux = (source & 63) | DMAMUX_ENABLE;
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger after each transfer is makes, including
- // the its last transfer. This effectively makes the 2
- // channels run in parallel. Note, on Teensy 3.0 & 3.1,
- // this feature triggers on every transfer except the last.
- // On Teensy-LC, it triggers on every one, including the last.
- void triggerAtTransfersOf(DMABaseClass &ch) {
- uint32_t dcr = ch.CFG->DCR;
- uint32_t linkcc = (dcr >> 4) & 3;
- if (linkcc == 0 || linkcc == 2) {
- ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) |
- DMA_DCR_LINKCC(2) | DMA_DCR_LCH1(channel);
- } else if (linkcc == 1) {
- ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) |
- DMA_DCR_LCH1(channel);
- } else {
- uint32_t lch1 = (dcr >> 2) & 3;
- ch.CFG->DCR = (dcr
- & ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3) | DMA_DCR_LCH1(3)))
- | DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(lch1) | DMA_DCR_LCH1(channel);
- }
- }
-
- // Use another DMA channel as the trigger, causing this
- // channel to trigger when the other channel completes.
- void triggerAtCompletionOf(DMABaseClass &ch) {
- uint32_t dcr = ch.CFG->DCR;
- uint32_t linkcc = (dcr >> 4) & 3;
- if (linkcc == 0 || linkcc == 3) {
- ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) |
- DMA_DCR_LINKCC(3) | DMA_DCR_LCH1(channel);
- } else {
- ch.CFG->DCR = (dcr
- & ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3)))
- | DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(channel);
- }
- }
-
- // Cause this DMA channel to be continuously triggered, so
- // it will move data as rapidly as possible, without waiting.
- // Normally this would be used with disableOnCompletion().
- void triggerContinuously(void) {
- uint32_t dcr = CFG->DCR;
- dcr &= ~(DMA_DCR_ERQ | DMA_DCR_CS);
- CFG->DCR = dcr;
- CFG->DCR = dcr | DMA_DCR_START;
- }
-
- // Manually trigger the DMA channel.
- void triggerManual(void) {
- CFG->DCR = (CFG->DCR & ~DMA_DCR_ERQ) | (DMA_DCR_CS | DMA_DCR_START);
- }
-
-
- /***************************************/
- /** Interrupts **/
- /***************************************/
-
- // An interrupt routine can be run when the DMA channel completes
- // the entire transfer, and also optionally when half of the
- // transfer is completed.
- void attachInterrupt(void (*isr)(void)) {
- _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
- NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void detachInterrupt(void) {
- NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
- }
-
- void clearInterrupt(void) {
- CFG->DSR_BCR = DMA_DSR_BCR_DONE;
- }
-
-
- /***************************************/
- /** Enable / Disable **/
- /***************************************/
-
- void enable(void) {
- CFG->DCR |= DMA_DCR_ERQ;
- }
- void disable(void) {
- CFG->DCR &= ~DMA_DCR_ERQ;
- }
-
- /***************************************/
- /** Status **/
- /***************************************/
-
- bool complete(void) {
- if (CFG->DSR_BCR & DMA_DSR_BCR_DONE) return true;
- return false;
- }
- void clearComplete(void) {
- CFG->DSR_BCR |= DMA_DSR_BCR_DONE;
- }
- bool error(void) {
- if (CFG->DSR_BCR &
- (DMA_DSR_BCR_CE | DMA_DSR_BCR_BES | DMA_DSR_BCR_BED)) return true;
- return false;
- }
- void clearError(void) {
- CFG->DSR_BCR |= DMA_DSR_BCR_DONE;
- }
- void * sourceAddress(void) {
- return (void *)(CFG->SAR);
- }
- void * destinationAddress(void) {
- return (void *)(CFG->DAR);
- }
-
- /***************************************/
- /** Direct Hardware Access **/
- /***************************************/
-
- uint8_t channel;
- // CFG is accessible due to inheritance from DMABaseClass
- };
-
- // arrange the relative priority of 2 or more DMA channels
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
- void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
-
-
-
- #endif // KINETISL
-
-
-
- #endif // __cplusplus
-
-
- #endif // DMAChannel_h_
|