Teensy 4.1 core updated for C++20

605 lines
18KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL2_TX_BUFFER_SIZE
  37. #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL2_RX_BUFFER_SIZE
  40. #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL2_TX_BUFFER_SIZE > 255
  76. static volatile uint16_t tx_buffer_head = 0;
  77. static volatile uint16_t tx_buffer_tail = 0;
  78. #else
  79. static volatile uint8_t tx_buffer_head = 0;
  80. static volatile uint8_t tx_buffer_tail = 0;
  81. #endif
  82. #if SERIAL2_RX_BUFFER_SIZE > 255
  83. static volatile uint16_t rx_buffer_head = 0;
  84. static volatile uint16_t rx_buffer_tail = 0;
  85. #else
  86. static volatile uint8_t rx_buffer_head = 0;
  87. static volatile uint8_t rx_buffer_tail = 0;
  88. #endif
  89. #if defined(KINETISK)
  90. static uint8_t rx_pin_num = 9;
  91. static uint8_t tx_pin_num = 10;
  92. #endif
  93. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  94. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  95. #ifdef HAS_KINETISK_UART1_FIFO
  96. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  97. #else
  98. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  99. #endif
  100. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  101. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  102. #define C2_TX_INACTIVE C2_ENABLE
  103. void serial2_begin(uint32_t divisor)
  104. {
  105. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  106. rx_buffer_head = 0;
  107. rx_buffer_tail = 0;
  108. tx_buffer_head = 0;
  109. tx_buffer_tail = 0;
  110. transmitting = 0;
  111. #if defined(KINETISK)
  112. switch (rx_pin_num) {
  113. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  114. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  115. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  116. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  117. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  118. #endif
  119. }
  120. switch (tx_pin_num) {
  121. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  122. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  123. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  124. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  125. case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  126. #endif
  127. }
  128. #elif defined(KINETISL)
  129. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  130. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  131. #endif
  132. #if defined(HAS_KINETISK_UART1)
  133. if (divisor < 32) divisor = 32;
  134. UART1_BDH = (divisor >> 13) & 0x1F;
  135. UART1_BDL = (divisor >> 5) & 0xFF;
  136. UART1_C4 = divisor & 0x1F;
  137. #ifdef HAS_KINETISK_UART1_FIFO
  138. UART1_C1 = UART_C1_ILT;
  139. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  140. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  141. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  142. #else
  143. UART1_C1 = 0;
  144. UART1_PFIFO = 0;
  145. #endif
  146. #elif defined(HAS_KINETISL_UART1)
  147. if (divisor < 1) divisor = 1;
  148. UART1_BDH = (divisor >> 8) & 0x1F;
  149. UART1_BDL = divisor & 0xFF;
  150. UART1_C1 = 0;
  151. #endif
  152. UART1_C2 = C2_TX_INACTIVE;
  153. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  154. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  155. }
  156. void serial2_format(uint32_t format)
  157. {
  158. uint8_t c;
  159. c = UART1_C1;
  160. c = (c & ~0x13) | (format & 0x03); // configure parity
  161. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  162. UART1_C1 = c;
  163. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  164. c = UART1_S2 & ~0x10;
  165. if (format & 0x10) c |= 0x10; // rx invert
  166. UART1_S2 = c;
  167. c = UART1_C3 & ~0x10;
  168. if (format & 0x20) c |= 0x10; // tx invert
  169. UART1_C3 = c;
  170. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  171. c = UART1_C4 & 0x1F;
  172. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  173. UART1_C4 = c;
  174. use9Bits = format & 0x80;
  175. #endif
  176. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  177. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  178. if ( format & 0x100) {
  179. uint8_t bdl = UART1_BDL;
  180. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  181. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  182. }
  183. #endif
  184. }
  185. void serial2_end(void)
  186. {
  187. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  188. while (transmitting) yield(); // wait for buffered data to send
  189. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  190. UART1_C2 = 0;
  191. #if defined(KINETISK)
  192. switch (rx_pin_num) {
  193. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  194. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  195. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  196. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  197. case 59: CORE_PIN59_CONFIG = 0; break;
  198. #endif
  199. }
  200. switch (tx_pin_num & 127) {
  201. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  202. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  203. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  204. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  205. case 58: CORE_PIN58_CONFIG = 0; break;
  206. #endif
  207. }
  208. #elif defined(KINETISL)
  209. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  210. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  211. #endif
  212. rx_buffer_head = 0;
  213. rx_buffer_tail = 0;
  214. if (rts_pin) rts_deassert();
  215. }
  216. void serial2_set_transmit_pin(uint8_t pin)
  217. {
  218. while (transmitting) ;
  219. pinMode(pin, OUTPUT);
  220. digitalWrite(pin, LOW);
  221. transmit_pin = portOutputRegister(pin);
  222. #if defined(KINETISL)
  223. transmit_mask = digitalPinToBitMask(pin);
  224. #endif
  225. }
  226. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  227. {
  228. #if defined(KINETISK)
  229. uint32_t cfg;
  230. if (opendrain) pin |= 128;
  231. if (pin == tx_pin_num) return;
  232. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  233. switch (tx_pin_num & 127) {
  234. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  235. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  236. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  237. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  238. case 58: CORE_PIN58_CONFIG = 0; break;
  239. #endif
  240. }
  241. if (opendrain) {
  242. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  243. } else {
  244. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  245. }
  246. switch (pin & 127) {
  247. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  248. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  249. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  250. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  251. case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
  252. #endif
  253. }
  254. }
  255. tx_pin_num = pin;
  256. #endif
  257. }
  258. void serial2_set_rx(uint8_t pin)
  259. {
  260. #if defined(KINETISK)
  261. if (pin == rx_pin_num) return;
  262. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  263. switch (rx_pin_num) {
  264. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  265. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  266. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  267. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  268. case 59: CORE_PIN59_CONFIG = 0; break;
  269. #endif
  270. }
  271. switch (pin) {
  272. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  273. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  274. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  275. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  276. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  277. #endif
  278. }
  279. }
  280. rx_pin_num = pin;
  281. #endif
  282. }
  283. int serial2_set_rts(uint8_t pin)
  284. {
  285. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  286. if (pin < CORE_NUM_DIGITAL) {
  287. rts_pin = portOutputRegister(pin);
  288. #if defined(KINETISL)
  289. rts_mask = digitalPinToBitMask(pin);
  290. #endif
  291. pinMode(pin, OUTPUT);
  292. rts_assert();
  293. } else {
  294. rts_pin = NULL;
  295. return 0;
  296. }
  297. /*
  298. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  299. if (pin == 22) {
  300. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  301. } else {
  302. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  303. return 0;
  304. }
  305. UART1_MODEM |= UART_MODEM_RXRTSE;
  306. */
  307. return 1;
  308. }
  309. int serial2_set_cts(uint8_t pin)
  310. {
  311. #if defined(KINETISK)
  312. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  313. if (pin == 23) {
  314. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  315. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
  316. } else if (pin == 60) {
  317. CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  318. #endif
  319. } else {
  320. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  321. return 0;
  322. }
  323. UART1_MODEM |= UART_MODEM_TXCTSE;
  324. return 1;
  325. #else
  326. return 0;
  327. #endif
  328. }
  329. void serial2_putchar(uint32_t c)
  330. {
  331. uint32_t head, n;
  332. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  333. if (transmit_pin) transmit_assert();
  334. head = tx_buffer_head;
  335. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  336. while (tx_buffer_tail == head) {
  337. int priority = nvic_execution_priority();
  338. if (priority <= IRQ_PRIORITY) {
  339. if ((UART1_S1 & UART_S1_TDRE)) {
  340. uint32_t tail = tx_buffer_tail;
  341. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  342. n = tx_buffer[tail];
  343. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  344. UART1_D = n;
  345. tx_buffer_tail = tail;
  346. }
  347. } else if (priority >= 256) {
  348. yield(); // wait
  349. }
  350. }
  351. tx_buffer[head] = c;
  352. transmitting = 1;
  353. tx_buffer_head = head;
  354. UART1_C2 = C2_TX_ACTIVE;
  355. }
  356. #ifdef HAS_KINETISK_UART1_FIFO
  357. void serial2_write(const void *buf, unsigned int count)
  358. {
  359. const uint8_t *p = (const uint8_t *)buf;
  360. const uint8_t *end = p + count;
  361. uint32_t head, n;
  362. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  363. if (transmit_pin) transmit_assert();
  364. while (p < end) {
  365. head = tx_buffer_head;
  366. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  367. if (tx_buffer_tail == head) {
  368. UART1_C2 = C2_TX_ACTIVE;
  369. do {
  370. int priority = nvic_execution_priority();
  371. if (priority <= IRQ_PRIORITY) {
  372. if ((UART1_S1 & UART_S1_TDRE)) {
  373. uint32_t tail = tx_buffer_tail;
  374. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  375. n = tx_buffer[tail];
  376. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  377. UART1_D = n;
  378. tx_buffer_tail = tail;
  379. }
  380. } else if (priority >= 256) {
  381. yield();
  382. }
  383. } while (tx_buffer_tail == head);
  384. }
  385. tx_buffer[head] = *p++;
  386. transmitting = 1;
  387. tx_buffer_head = head;
  388. }
  389. UART1_C2 = C2_TX_ACTIVE;
  390. }
  391. #else
  392. void serial2_write(const void *buf, unsigned int count)
  393. {
  394. const uint8_t *p = (const uint8_t *)buf;
  395. while (count-- > 0) serial2_putchar(*p++);
  396. }
  397. #endif
  398. void serial2_flush(void)
  399. {
  400. while (transmitting) yield(); // wait
  401. }
  402. int serial2_write_buffer_free(void)
  403. {
  404. uint32_t head, tail;
  405. head = tx_buffer_head;
  406. tail = tx_buffer_tail;
  407. if (head >= tail) return SERIAL2_TX_BUFFER_SIZE - 1 - head + tail;
  408. return tail - head - 1;
  409. }
  410. int serial2_available(void)
  411. {
  412. uint32_t head, tail;
  413. head = rx_buffer_head;
  414. tail = rx_buffer_tail;
  415. if (head >= tail) return head - tail;
  416. return SERIAL2_RX_BUFFER_SIZE + head - tail;
  417. }
  418. int serial2_getchar(void)
  419. {
  420. uint32_t head, tail;
  421. int c;
  422. head = rx_buffer_head;
  423. tail = rx_buffer_tail;
  424. if (head == tail) return -1;
  425. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  426. c = rx_buffer[tail];
  427. rx_buffer_tail = tail;
  428. if (rts_pin) {
  429. int avail;
  430. if (head >= tail) avail = head - tail;
  431. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  432. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  433. }
  434. return c;
  435. }
  436. int serial2_peek(void)
  437. {
  438. uint32_t head, tail;
  439. head = rx_buffer_head;
  440. tail = rx_buffer_tail;
  441. if (head == tail) return -1;
  442. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  443. return rx_buffer[tail];
  444. }
  445. void serial2_clear(void)
  446. {
  447. #ifdef HAS_KINETISK_UART1_FIFO
  448. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  449. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  450. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  451. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  452. #endif
  453. rx_buffer_head = rx_buffer_tail;
  454. if (rts_pin) rts_assert();
  455. }
  456. // status interrupt combines
  457. // Transmit data below watermark UART_S1_TDRE
  458. // Transmit complete UART_S1_TC
  459. // Idle line UART_S1_IDLE
  460. // Receive data above watermark UART_S1_RDRF
  461. // LIN break detect UART_S2_LBKDIF
  462. // RxD pin active edge UART_S2_RXEDGIF
  463. void uart1_status_isr(void)
  464. {
  465. uint32_t head, tail, n;
  466. uint8_t c;
  467. #ifdef HAS_KINETISK_UART1_FIFO
  468. uint32_t newhead;
  469. uint8_t avail;
  470. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  471. __disable_irq();
  472. avail = UART1_RCFIFO;
  473. if (avail == 0) {
  474. // The only way to clear the IDLE interrupt flag is
  475. // to read the data register. But reading with no
  476. // data causes a FIFO underrun, which causes the
  477. // FIFO to return corrupted data. If anyone from
  478. // Freescale reads this, what a poor design! There
  479. // write should be a write-1-to-clear for IDLE.
  480. c = UART1_D;
  481. // flushing the fifo recovers from the underrun,
  482. // but there's a possible race condition where a
  483. // new character could be received between reading
  484. // RCFIFO == 0 and flushing the FIFO. To minimize
  485. // the chance, interrupts are disabled so a higher
  486. // priority interrupt (hopefully) doesn't delay.
  487. // TODO: change this to disabling the IDLE interrupt
  488. // which won't be simple, since we already manage
  489. // which transmit interrupts are enabled.
  490. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  491. __enable_irq();
  492. } else {
  493. __enable_irq();
  494. head = rx_buffer_head;
  495. tail = rx_buffer_tail;
  496. do {
  497. if (use9Bits && (UART1_C3 & 0x80)) {
  498. n = UART1_D | 0x100;
  499. } else {
  500. n = UART1_D;
  501. }
  502. newhead = head + 1;
  503. if (newhead >= SERIAL2_RX_BUFFER_SIZE) newhead = 0;
  504. if (newhead != tail) {
  505. head = newhead;
  506. rx_buffer[head] = n;
  507. }
  508. } while (--avail > 0);
  509. rx_buffer_head = head;
  510. if (rts_pin) {
  511. int avail;
  512. if (head >= tail) avail = head - tail;
  513. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  514. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  515. }
  516. }
  517. }
  518. c = UART1_C2;
  519. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  520. head = tx_buffer_head;
  521. tail = tx_buffer_tail;
  522. do {
  523. if (tail == head) break;
  524. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  525. avail = UART1_S1;
  526. n = tx_buffer[tail];
  527. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  528. UART1_D = n;
  529. } while (UART1_TCFIFO < 8);
  530. tx_buffer_tail = tail;
  531. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  532. }
  533. #else
  534. if (UART1_S1 & UART_S1_RDRF) {
  535. if (use9Bits && (UART1_C3 & 0x80)) {
  536. n = UART1_D | 0x100;
  537. } else {
  538. n = UART1_D;
  539. }
  540. head = rx_buffer_head + 1;
  541. if (head >= SERIAL2_RX_BUFFER_SIZE) head = 0;
  542. if (head != rx_buffer_tail) {
  543. rx_buffer[head] = n;
  544. rx_buffer_head = head;
  545. }
  546. }
  547. c = UART1_C2;
  548. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  549. head = tx_buffer_head;
  550. tail = tx_buffer_tail;
  551. if (head == tail) {
  552. UART1_C2 = C2_TX_COMPLETING;
  553. } else {
  554. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  555. n = tx_buffer[tail];
  556. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  557. UART1_D = n;
  558. tx_buffer_tail = tail;
  559. }
  560. }
  561. #endif
  562. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  563. transmitting = 0;
  564. if (transmit_pin) transmit_deassert();
  565. UART1_C2 = C2_TX_INACTIVE;
  566. }
  567. }