Teensy 4.1 core updated for C++20
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

1121 lines
29KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2016 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. *
  30. * Trying to understand this rather complex code?
  31. *
  32. * Kevin Cuzner wrote a simpler version, and a great blog article:
  33. * http://kevincuzner.com/2014/12/12/teensy-3-1-bare-metal-writing-a-usb-driver/
  34. * https://github.com/kcuzner/teensy-oscilloscope/blob/master/scope-teensy/src/usb.c
  35. *
  36. * Andy Payne wrote another relatively simple USB example for Freescale Kinetis
  37. * https://github.com/payne92/bare-metal-arm
  38. */
  39. #include "usb_dev.h"
  40. #if F_CPU >= 20000000 && defined(NUM_ENDPOINTS)
  41. #include "kinetis.h"
  42. //#include "HardwareSerial.h"
  43. #include "usb_mem.h"
  44. // buffer descriptor table
  45. typedef struct {
  46. uint32_t desc;
  47. void * addr;
  48. } bdt_t;
  49. __attribute__ ((section(".usbdescriptortable"), used))
  50. static bdt_t table[(NUM_ENDPOINTS+1)*4];
  51. static usb_packet_t *rx_first[NUM_ENDPOINTS];
  52. static usb_packet_t *rx_last[NUM_ENDPOINTS];
  53. static usb_packet_t *tx_first[NUM_ENDPOINTS];
  54. static usb_packet_t *tx_last[NUM_ENDPOINTS];
  55. uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
  56. static uint8_t tx_state[NUM_ENDPOINTS];
  57. #define TX_STATE_BOTH_FREE_EVEN_FIRST 0
  58. #define TX_STATE_BOTH_FREE_ODD_FIRST 1
  59. #define TX_STATE_EVEN_FREE 2
  60. #define TX_STATE_ODD_FREE 3
  61. #define TX_STATE_NONE_FREE_EVEN_FIRST 4
  62. #define TX_STATE_NONE_FREE_ODD_FIRST 5
  63. #define BDT_OWN 0x80
  64. #define BDT_DATA1 0x40
  65. #define BDT_DATA0 0x00
  66. #define BDT_DTS 0x08
  67. #define BDT_STALL 0x04
  68. #define BDT_PID(n) (((n) >> 2) & 15)
  69. #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
  70. | ((data) ? BDT_DATA1 : BDT_DATA0) \
  71. | ((count) << 16))
  72. #define TX 1
  73. #define RX 0
  74. #define ODD 1
  75. #define EVEN 0
  76. #define DATA0 0
  77. #define DATA1 1
  78. #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  79. #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  80. static union {
  81. struct {
  82. union {
  83. struct {
  84. uint8_t bmRequestType;
  85. uint8_t bRequest;
  86. };
  87. uint16_t wRequestAndType;
  88. };
  89. uint16_t wValue;
  90. uint16_t wIndex;
  91. uint16_t wLength;
  92. };
  93. struct {
  94. uint32_t word1;
  95. uint32_t word2;
  96. };
  97. } setup;
  98. #define GET_STATUS 0
  99. #define CLEAR_FEATURE 1
  100. #define SET_FEATURE 3
  101. #define SET_ADDRESS 5
  102. #define GET_DESCRIPTOR 6
  103. #define SET_DESCRIPTOR 7
  104. #define GET_CONFIGURATION 8
  105. #define SET_CONFIGURATION 9
  106. #define GET_INTERFACE 10
  107. #define SET_INTERFACE 11
  108. #define SYNCH_FRAME 12
  109. // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
  110. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
  111. // Status stage uses a DATA1 PID.
  112. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  113. static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  114. static const uint8_t *ep0_tx_ptr = NULL;
  115. static uint16_t ep0_tx_len;
  116. static uint8_t ep0_tx_bdt_bank = 0;
  117. static uint8_t ep0_tx_data_toggle = 0;
  118. uint8_t usb_rx_memory_needed = 0;
  119. volatile uint8_t usb_configuration = 0;
  120. volatile uint8_t usb_reboot_timer = 0;
  121. static void endpoint0_stall(void)
  122. {
  123. USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  124. }
  125. static void endpoint0_transmit(const void *data, uint32_t len)
  126. {
  127. #if 0
  128. serial_print("tx0:");
  129. serial_phex32((uint32_t)data);
  130. serial_print(",");
  131. serial_phex16(len);
  132. serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
  133. serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
  134. #endif
  135. table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
  136. table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
  137. ep0_tx_data_toggle ^= 1;
  138. ep0_tx_bdt_bank ^= 1;
  139. }
  140. static uint8_t reply_buffer[8];
  141. static void usb_setup(void)
  142. {
  143. const uint8_t *data = NULL;
  144. uint32_t datalen = 0;
  145. const usb_descriptor_list_t *list;
  146. uint32_t size;
  147. volatile uint8_t *reg;
  148. uint8_t epconf;
  149. const uint8_t *cfg;
  150. int i;
  151. switch (setup.wRequestAndType) {
  152. case 0x0500: // SET_ADDRESS
  153. break;
  154. case 0x0900: // SET_CONFIGURATION
  155. //serial_print("configure\n");
  156. usb_configuration = setup.wValue;
  157. reg = &USB0_ENDPT1;
  158. cfg = usb_endpoint_config_table;
  159. // clear all BDT entries, free any allocated memory...
  160. for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
  161. if (table[i].desc & BDT_OWN) {
  162. usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
  163. }
  164. }
  165. // free all queued packets
  166. for (i=0; i < NUM_ENDPOINTS; i++) {
  167. usb_packet_t *p, *n;
  168. p = rx_first[i];
  169. while (p) {
  170. n = p->next;
  171. usb_free(p);
  172. p = n;
  173. }
  174. rx_first[i] = NULL;
  175. rx_last[i] = NULL;
  176. p = tx_first[i];
  177. while (p) {
  178. n = p->next;
  179. usb_free(p);
  180. p = n;
  181. }
  182. tx_first[i] = NULL;
  183. tx_last[i] = NULL;
  184. usb_rx_byte_count_data[i] = 0;
  185. switch (tx_state[i]) {
  186. case TX_STATE_EVEN_FREE:
  187. case TX_STATE_NONE_FREE_EVEN_FIRST:
  188. tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  189. break;
  190. case TX_STATE_ODD_FREE:
  191. case TX_STATE_NONE_FREE_ODD_FIRST:
  192. tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
  193. break;
  194. default:
  195. break;
  196. }
  197. }
  198. usb_rx_memory_needed = 0;
  199. for (i=1; i <= NUM_ENDPOINTS; i++) {
  200. epconf = *cfg++;
  201. *reg = epconf;
  202. reg += 4;
  203. #ifdef AUDIO_INTERFACE
  204. if (i == AUDIO_RX_ENDPOINT) {
  205. table[index(i, RX, EVEN)].addr = usb_audio_receive_buffer;
  206. table[index(i, RX, EVEN)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  207. table[index(i, RX, ODD)].addr = usb_audio_receive_buffer;
  208. table[index(i, RX, ODD)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  209. } else
  210. #endif
  211. if (epconf & USB_ENDPT_EPRXEN) {
  212. usb_packet_t *p;
  213. p = usb_malloc();
  214. if (p) {
  215. table[index(i, RX, EVEN)].addr = p->buf;
  216. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  217. } else {
  218. table[index(i, RX, EVEN)].desc = 0;
  219. usb_rx_memory_needed++;
  220. }
  221. p = usb_malloc();
  222. if (p) {
  223. table[index(i, RX, ODD)].addr = p->buf;
  224. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  225. } else {
  226. table[index(i, RX, ODD)].desc = 0;
  227. usb_rx_memory_needed++;
  228. }
  229. }
  230. table[index(i, TX, EVEN)].desc = 0;
  231. table[index(i, TX, ODD)].desc = 0;
  232. #ifdef AUDIO_INTERFACE
  233. if (i == AUDIO_SYNC_ENDPOINT) {
  234. table[index(i, TX, EVEN)].addr = &usb_audio_sync_feedback;
  235. table[index(i, TX, EVEN)].desc = (3<<16) | BDT_OWN;
  236. }
  237. #endif
  238. }
  239. break;
  240. case 0x0880: // GET_CONFIGURATION
  241. reply_buffer[0] = usb_configuration;
  242. datalen = 1;
  243. data = reply_buffer;
  244. break;
  245. case 0x0080: // GET_STATUS (device)
  246. reply_buffer[0] = 0;
  247. reply_buffer[1] = 0;
  248. datalen = 2;
  249. data = reply_buffer;
  250. break;
  251. case 0x0082: // GET_STATUS (endpoint)
  252. if (setup.wIndex > NUM_ENDPOINTS) {
  253. // TODO: do we need to handle IN vs OUT here?
  254. endpoint0_stall();
  255. return;
  256. }
  257. reply_buffer[0] = 0;
  258. reply_buffer[1] = 0;
  259. if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
  260. data = reply_buffer;
  261. datalen = 2;
  262. break;
  263. case 0x0102: // CLEAR_FEATURE (endpoint)
  264. i = setup.wIndex & 0x7F;
  265. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  266. // TODO: do we need to handle IN vs OUT here?
  267. endpoint0_stall();
  268. return;
  269. }
  270. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) &= ~0x02;
  271. // TODO: do we need to clear the data toggle here?
  272. break;
  273. case 0x0302: // SET_FEATURE (endpoint)
  274. i = setup.wIndex & 0x7F;
  275. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  276. // TODO: do we need to handle IN vs OUT here?
  277. endpoint0_stall();
  278. return;
  279. }
  280. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) |= 0x02;
  281. // TODO: do we need to clear the data toggle here?
  282. break;
  283. case 0x0680: // GET_DESCRIPTOR
  284. case 0x0681:
  285. //serial_print("desc:");
  286. //serial_phex16(setup.wValue);
  287. //serial_print("\n");
  288. for (list = usb_descriptor_list; 1; list++) {
  289. if (list->addr == NULL) break;
  290. //if (setup.wValue == list->wValue &&
  291. //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
  292. if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
  293. data = list->addr;
  294. if ((setup.wValue >> 8) == 3) {
  295. // for string descriptors, use the descriptor's
  296. // length field, allowing runtime configured
  297. // length.
  298. datalen = *(list->addr);
  299. } else {
  300. datalen = list->length;
  301. }
  302. #if 0
  303. serial_print("Desc found, ");
  304. serial_phex32((uint32_t)data);
  305. serial_print(",");
  306. serial_phex16(datalen);
  307. serial_print(",");
  308. serial_phex(data[0]);
  309. serial_phex(data[1]);
  310. serial_phex(data[2]);
  311. serial_phex(data[3]);
  312. serial_phex(data[4]);
  313. serial_phex(data[5]);
  314. serial_print("\n");
  315. #endif
  316. goto send;
  317. }
  318. }
  319. //serial_print("desc: not found\n");
  320. endpoint0_stall();
  321. return;
  322. #if defined(CDC_STATUS_INTERFACE)
  323. case 0x2221: // CDC_SET_CONTROL_LINE_STATE
  324. usb_cdc_line_rtsdtr_millis = systick_millis_count;
  325. usb_cdc_line_rtsdtr = setup.wValue;
  326. //serial_print("set control line state\n");
  327. break;
  328. case 0x2321: // CDC_SEND_BREAK
  329. break;
  330. case 0x2021: // CDC_SET_LINE_CODING
  331. //serial_print("set coding, waiting...\n");
  332. return;
  333. #endif
  334. #if defined(MTP_INTERFACE)
  335. case 0x2164: // Cancel Request (PTP spec, 5.2.1, page 8)
  336. // TODO: required by PTP spec
  337. endpoint0_stall();
  338. return;
  339. case 0x2166: // Device Reset (PTP spec, 5.2.3, page 10)
  340. // TODO: required by PTP spec
  341. endpoint0_stall();
  342. return;
  343. case 0x2167: // Get Device Statis (PTP spec, 5.2.4, page 10)
  344. // TODO: required by PTP spec
  345. endpoint0_stall();
  346. return;
  347. #endif
  348. // TODO: this does not work... why?
  349. #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
  350. case 0x0921: // HID SET_REPORT
  351. //serial_print(":)\n");
  352. return;
  353. case 0x0A21: // HID SET_IDLE
  354. break;
  355. // case 0xC940:
  356. #endif
  357. #if defined(AUDIO_INTERFACE)
  358. case 0x0B01: // SET_INTERFACE (alternate setting)
  359. if (setup.wIndex == AUDIO_INTERFACE+1) {
  360. usb_audio_transmit_setting = setup.wValue;
  361. if (usb_audio_transmit_setting > 0) {
  362. bdt_t *b = &table[index(AUDIO_TX_ENDPOINT, TX, EVEN)];
  363. uint8_t state = tx_state[AUDIO_TX_ENDPOINT-1];
  364. if (state) b++;
  365. if (!(b->desc & BDT_OWN)) {
  366. memset(usb_audio_transmit_buffer, 0, 176);
  367. b->addr = usb_audio_transmit_buffer;
  368. b->desc = (176 << 16) | BDT_OWN;
  369. tx_state[AUDIO_TX_ENDPOINT-1] = state ^ 1;
  370. }
  371. }
  372. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  373. usb_audio_receive_setting = setup.wValue;
  374. } else {
  375. endpoint0_stall();
  376. return;
  377. }
  378. break;
  379. case 0x0A81: // GET_INTERFACE (alternate setting)
  380. datalen = 1;
  381. data = reply_buffer;
  382. if (setup.wIndex == AUDIO_INTERFACE+1) {
  383. reply_buffer[0] = usb_audio_transmit_setting;
  384. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  385. reply_buffer[0] = usb_audio_receive_setting;
  386. } else {
  387. endpoint0_stall();
  388. return;
  389. }
  390. break;
  391. case 0x0122: // SET_CUR (wValue=0, wIndex=interface, wLength=len)
  392. return;
  393. case 0x81A2: // GET_CUR (wValue=0, wIndex=interface, wLength=len)
  394. if (setup.wLength >= 3) {
  395. reply_buffer[0] = 44100 & 255;
  396. reply_buffer[1] = 44100 >> 8;
  397. reply_buffer[2] = 0;
  398. datalen = 3;
  399. data = reply_buffer;
  400. } else {
  401. endpoint0_stall();
  402. return;
  403. }
  404. break;
  405. #endif
  406. default:
  407. endpoint0_stall();
  408. return;
  409. }
  410. send:
  411. //serial_print("setup send ");
  412. //serial_phex32(data);
  413. //serial_print(",");
  414. //serial_phex16(datalen);
  415. //serial_print("\n");
  416. if (datalen > setup.wLength) datalen = setup.wLength;
  417. size = datalen;
  418. if (size > EP0_SIZE) size = EP0_SIZE;
  419. endpoint0_transmit(data, size);
  420. data += size;
  421. datalen -= size;
  422. if (datalen == 0 && size < EP0_SIZE) return;
  423. size = datalen;
  424. if (size > EP0_SIZE) size = EP0_SIZE;
  425. endpoint0_transmit(data, size);
  426. data += size;
  427. datalen -= size;
  428. if (datalen == 0 && size < EP0_SIZE) return;
  429. ep0_tx_ptr = data;
  430. ep0_tx_len = datalen;
  431. }
  432. //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
  433. //experiences any configuration event (configuration events are explained in
  434. //Sections 9.1.1.5 and 9.4.5).
  435. //Configuring a device or changing an alternate setting causes all of the status
  436. //and configuration values associated with endpoints in the affected interfaces
  437. //to be set to their default values. This includes setting the data toggle of
  438. //any endpoint using data toggles to the value DATA0.
  439. //For endpoints using data toggle, regardless of whether an endpoint has the
  440. //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
  441. //data toggle being reinitialized to DATA0.
  442. // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  443. static void usb_control(uint32_t stat)
  444. {
  445. bdt_t *b;
  446. uint32_t pid, size;
  447. uint8_t *buf;
  448. const uint8_t *data;
  449. b = stat2bufferdescriptor(stat);
  450. pid = BDT_PID(b->desc);
  451. //count = b->desc >> 16;
  452. buf = b->addr;
  453. //serial_print("pid:");
  454. //serial_phex(pid);
  455. //serial_print(", count:");
  456. //serial_phex(count);
  457. //serial_print("\n");
  458. switch (pid) {
  459. case 0x0D: // Setup received from host
  460. //serial_print("PID=Setup\n");
  461. //if (count != 8) ; // panic?
  462. // grab the 8 byte setup info
  463. setup.word1 = *(uint32_t *)(buf);
  464. setup.word2 = *(uint32_t *)(buf + 4);
  465. // give the buffer back
  466. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  467. //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
  468. //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
  469. // clear any leftover pending IN transactions
  470. ep0_tx_ptr = NULL;
  471. if (ep0_tx_data_toggle) {
  472. }
  473. //if (table[index(0, TX, EVEN)].desc & 0x80) {
  474. //serial_print("leftover tx even\n");
  475. //}
  476. //if (table[index(0, TX, ODD)].desc & 0x80) {
  477. //serial_print("leftover tx odd\n");
  478. //}
  479. table[index(0, TX, EVEN)].desc = 0;
  480. table[index(0, TX, ODD)].desc = 0;
  481. // first IN after Setup is always DATA1
  482. ep0_tx_data_toggle = 1;
  483. #if 0
  484. serial_print("bmRequestType:");
  485. serial_phex(setup.bmRequestType);
  486. serial_print(", bRequest:");
  487. serial_phex(setup.bRequest);
  488. serial_print(", wValue:");
  489. serial_phex16(setup.wValue);
  490. serial_print(", wIndex:");
  491. serial_phex16(setup.wIndex);
  492. serial_print(", len:");
  493. serial_phex16(setup.wLength);
  494. serial_print("\n");
  495. #endif
  496. // actually "do" the setup request
  497. usb_setup();
  498. // unfreeze the USB, now that we're ready
  499. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  500. break;
  501. case 0x01: // OUT transaction received from host
  502. case 0x02:
  503. //serial_print("PID=OUT\n");
  504. #ifdef CDC_STATUS_INTERFACE
  505. if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
  506. int i;
  507. uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
  508. //serial_print("set line coding ");
  509. for (i=0; i<7; i++) {
  510. //serial_phex(*buf);
  511. *dst++ = *buf++;
  512. }
  513. //serial_phex32(usb_cdc_line_coding[0]);
  514. //serial_print("\n");
  515. if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
  516. endpoint0_transmit(NULL, 0);
  517. }
  518. #endif
  519. #ifdef KEYBOARD_INTERFACE
  520. if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
  521. keyboard_leds = buf[0];
  522. endpoint0_transmit(NULL, 0);
  523. }
  524. #endif
  525. #ifdef SEREMU_INTERFACE
  526. if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
  527. && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
  528. usb_reboot_timer = 5;
  529. endpoint0_transmit(NULL, 0);
  530. }
  531. #endif
  532. #ifdef AUDIO_INTERFACE
  533. if (setup.wRequestAndType == 0x0122 /* SET_CUR */) {
  534. // TODO: actually check data, do something with it?
  535. endpoint0_transmit(NULL, 0);
  536. }
  537. #endif
  538. // give the buffer back
  539. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  540. break;
  541. case 0x09: // IN transaction completed to host
  542. //serial_print("PID=IN:");
  543. //serial_phex(stat);
  544. //serial_print("\n");
  545. // send remaining data, if any...
  546. data = ep0_tx_ptr;
  547. if (data) {
  548. size = ep0_tx_len;
  549. if (size > EP0_SIZE) size = EP0_SIZE;
  550. endpoint0_transmit(data, size);
  551. data += size;
  552. ep0_tx_len -= size;
  553. ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
  554. }
  555. if (setup.bRequest == 5 && setup.bmRequestType == 0) {
  556. setup.bRequest = 0;
  557. //serial_print("set address: ");
  558. //serial_phex16(setup.wValue);
  559. //serial_print("\n");
  560. USB0_ADDR = setup.wValue;
  561. }
  562. break;
  563. //default:
  564. //serial_print("PID=unknown:");
  565. //serial_phex(pid);
  566. //serial_print("\n");
  567. }
  568. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  569. }
  570. usb_packet_t *usb_rx(uint32_t endpoint)
  571. {
  572. usb_packet_t *ret;
  573. endpoint--;
  574. if (endpoint >= NUM_ENDPOINTS) return NULL;
  575. __disable_irq();
  576. ret = rx_first[endpoint];
  577. if (ret) {
  578. rx_first[endpoint] = ret->next;
  579. usb_rx_byte_count_data[endpoint] -= ret->len;
  580. }
  581. __enable_irq();
  582. //serial_print("rx, epidx=");
  583. //serial_phex(endpoint);
  584. //serial_print(", packet=");
  585. //serial_phex32(ret);
  586. //serial_print("\n");
  587. return ret;
  588. }
  589. static uint32_t usb_queue_byte_count(const usb_packet_t *p)
  590. {
  591. uint32_t count=0;
  592. __disable_irq();
  593. for ( ; p; p = p->next) {
  594. count += p->len;
  595. }
  596. __enable_irq();
  597. return count;
  598. }
  599. // TODO: make this an inline function...
  600. /*
  601. uint32_t usb_rx_byte_count(uint32_t endpoint)
  602. {
  603. endpoint--;
  604. if (endpoint >= NUM_ENDPOINTS) return 0;
  605. return usb_rx_byte_count_data[endpoint];
  606. //return usb_queue_byte_count(rx_first[endpoint]);
  607. }
  608. */
  609. uint32_t usb_tx_byte_count(uint32_t endpoint)
  610. {
  611. endpoint--;
  612. if (endpoint >= NUM_ENDPOINTS) return 0;
  613. return usb_queue_byte_count(tx_first[endpoint]);
  614. }
  615. uint32_t usb_tx_packet_count(uint32_t endpoint)
  616. {
  617. const usb_packet_t *p;
  618. uint32_t count=0;
  619. endpoint--;
  620. if (endpoint >= NUM_ENDPOINTS) return 0;
  621. __disable_irq();
  622. for (p = tx_first[endpoint]; p; p = p->next) count++;
  623. __enable_irq();
  624. return count;
  625. }
  626. // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
  627. // receive endpoints are starving for memory. The intention is to give
  628. // endpoints needing receive memory priority over the user's code, which is
  629. // likely calling usb_malloc to obtain memory for transmitting. When the
  630. // user is creating data very quickly, their consumption could starve reception
  631. // without this prioritization. The packet buffer (input) is assigned to the
  632. // first endpoint needing memory.
  633. //
  634. void usb_rx_memory(usb_packet_t *packet)
  635. {
  636. unsigned int i;
  637. const uint8_t *cfg;
  638. cfg = usb_endpoint_config_table;
  639. //serial_print("rx_mem:");
  640. __disable_irq();
  641. for (i=1; i <= NUM_ENDPOINTS; i++) {
  642. #ifdef AUDIO_INTERFACE
  643. if (i == AUDIO_RX_ENDPOINT) continue;
  644. #endif
  645. if (*cfg++ & USB_ENDPT_EPRXEN) {
  646. if (table[index(i, RX, EVEN)].desc == 0) {
  647. table[index(i, RX, EVEN)].addr = packet->buf;
  648. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  649. usb_rx_memory_needed--;
  650. __enable_irq();
  651. //serial_phex(i);
  652. //serial_print(",even\n");
  653. return;
  654. }
  655. if (table[index(i, RX, ODD)].desc == 0) {
  656. table[index(i, RX, ODD)].addr = packet->buf;
  657. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  658. usb_rx_memory_needed--;
  659. __enable_irq();
  660. //serial_phex(i);
  661. //serial_print(",odd\n");
  662. return;
  663. }
  664. }
  665. }
  666. __enable_irq();
  667. // we should never reach this point. If we get here, it means
  668. // usb_rx_memory_needed was set greater than zero, but no memory
  669. // was actually needed.
  670. usb_rx_memory_needed = 0;
  671. usb_free(packet);
  672. return;
  673. }
  674. //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  675. //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  676. void usb_tx(uint32_t endpoint, usb_packet_t *packet)
  677. {
  678. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  679. uint8_t next;
  680. endpoint--;
  681. if (endpoint >= NUM_ENDPOINTS) return;
  682. __disable_irq();
  683. //serial_print("txstate=");
  684. //serial_phex(tx_state[endpoint]);
  685. //serial_print("\n");
  686. switch (tx_state[endpoint]) {
  687. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  688. next = TX_STATE_ODD_FREE;
  689. break;
  690. case TX_STATE_BOTH_FREE_ODD_FIRST:
  691. b++;
  692. next = TX_STATE_EVEN_FREE;
  693. break;
  694. case TX_STATE_EVEN_FREE:
  695. next = TX_STATE_NONE_FREE_ODD_FIRST;
  696. break;
  697. case TX_STATE_ODD_FREE:
  698. b++;
  699. next = TX_STATE_NONE_FREE_EVEN_FIRST;
  700. break;
  701. default:
  702. if (tx_first[endpoint] == NULL) {
  703. tx_first[endpoint] = packet;
  704. } else {
  705. tx_last[endpoint]->next = packet;
  706. }
  707. tx_last[endpoint] = packet;
  708. __enable_irq();
  709. return;
  710. }
  711. tx_state[endpoint] = next;
  712. b->addr = packet->buf;
  713. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  714. __enable_irq();
  715. }
  716. void usb_tx_isochronous(uint32_t endpoint, void *data, uint32_t len)
  717. {
  718. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  719. uint8_t next, state;
  720. endpoint--;
  721. if (endpoint >= NUM_ENDPOINTS) return;
  722. __disable_irq();
  723. state = tx_state[endpoint];
  724. if (state == 0) {
  725. next = 1;
  726. } else {
  727. b++;
  728. next = 0;
  729. }
  730. tx_state[endpoint] = next;
  731. b->addr = data;
  732. b->desc = (len << 16) | BDT_OWN;
  733. __enable_irq();
  734. }
  735. void _reboot_Teensyduino_(void)
  736. {
  737. // TODO: initialize R0 with a code....
  738. __asm__ volatile("bkpt");
  739. }
  740. void usb_isr(void)
  741. {
  742. uint8_t status, stat, t;
  743. //serial_print("isr");
  744. //status = USB0_ISTAT;
  745. //serial_phex(status);
  746. //serial_print("\n");
  747. restart:
  748. status = USB0_ISTAT;
  749. if ((status & USB_ISTAT_SOFTOK /* 04 */ )) {
  750. if (usb_configuration) {
  751. t = usb_reboot_timer;
  752. if (t) {
  753. usb_reboot_timer = --t;
  754. if (!t) _reboot_Teensyduino_();
  755. }
  756. #ifdef CDC_DATA_INTERFACE
  757. t = usb_cdc_transmit_flush_timer;
  758. if (t) {
  759. usb_cdc_transmit_flush_timer = --t;
  760. if (t == 0) usb_serial_flush_callback();
  761. }
  762. #endif
  763. #ifdef SEREMU_INTERFACE
  764. t = usb_seremu_transmit_flush_timer;
  765. if (t) {
  766. usb_seremu_transmit_flush_timer = --t;
  767. if (t == 0) usb_seremu_flush_callback();
  768. }
  769. #endif
  770. #ifdef MIDI_INTERFACE
  771. usb_midi_flush_output();
  772. #endif
  773. #ifdef FLIGHTSIM_INTERFACE
  774. usb_flightsim_flush_callback();
  775. #endif
  776. }
  777. USB0_ISTAT = USB_ISTAT_SOFTOK;
  778. }
  779. if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
  780. uint8_t endpoint;
  781. stat = USB0_STAT;
  782. //serial_print("token: ep=");
  783. //serial_phex(stat >> 4);
  784. //serial_print(stat & 0x08 ? ",tx" : ",rx");
  785. //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
  786. endpoint = stat >> 4;
  787. if (endpoint == 0) {
  788. usb_control(stat);
  789. } else {
  790. bdt_t *b = stat2bufferdescriptor(stat);
  791. usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
  792. #if 0
  793. serial_print("ep:");
  794. serial_phex(endpoint);
  795. serial_print(", pid:");
  796. serial_phex(BDT_PID(b->desc));
  797. serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
  798. serial_print(", count:");
  799. serial_phex(b->desc >> 16);
  800. serial_print("\n");
  801. #endif
  802. endpoint--; // endpoint is index to zero-based arrays
  803. #ifdef AUDIO_INTERFACE
  804. if ((endpoint == AUDIO_TX_ENDPOINT-1) && (stat & 0x08)) {
  805. unsigned int len;
  806. len = usb_audio_transmit_callback();
  807. if (len > 0) {
  808. b = (bdt_t *)((uint32_t)b ^ 8);
  809. b->addr = usb_audio_transmit_buffer;
  810. b->desc = (len << 16) | BDT_OWN;
  811. tx_state[endpoint] ^= 1;
  812. }
  813. } else if ((endpoint == AUDIO_RX_ENDPOINT-1) && !(stat & 0x08)) {
  814. usb_audio_receive_callback(b->desc >> 16);
  815. b->addr = usb_audio_receive_buffer;
  816. b->desc = (AUDIO_RX_SIZE << 16) | BDT_OWN;
  817. } else if ((endpoint == AUDIO_SYNC_ENDPOINT-1) && (stat & 0x08)) {
  818. b = (bdt_t *)((uint32_t)b ^ 8);
  819. b->addr = &usb_audio_sync_feedback;
  820. b->desc = (3 << 16) | BDT_OWN;
  821. tx_state[endpoint] ^= 1;
  822. } else
  823. #endif
  824. if (stat & 0x08) { // transmit
  825. usb_free(packet);
  826. packet = tx_first[endpoint];
  827. if (packet) {
  828. //serial_print("tx packet\n");
  829. tx_first[endpoint] = packet->next;
  830. b->addr = packet->buf;
  831. switch (tx_state[endpoint]) {
  832. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  833. tx_state[endpoint] = TX_STATE_ODD_FREE;
  834. break;
  835. case TX_STATE_BOTH_FREE_ODD_FIRST:
  836. tx_state[endpoint] = TX_STATE_EVEN_FREE;
  837. break;
  838. case TX_STATE_EVEN_FREE:
  839. tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
  840. break;
  841. case TX_STATE_ODD_FREE:
  842. tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
  843. break;
  844. default:
  845. break;
  846. }
  847. b->desc = BDT_DESC(packet->len,
  848. ((uint32_t)b & 8) ? DATA1 : DATA0);
  849. } else {
  850. //serial_print("tx no packet\n");
  851. switch (tx_state[endpoint]) {
  852. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  853. case TX_STATE_BOTH_FREE_ODD_FIRST:
  854. break;
  855. case TX_STATE_EVEN_FREE:
  856. tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  857. break;
  858. case TX_STATE_ODD_FREE:
  859. tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
  860. break;
  861. default:
  862. tx_state[endpoint] = ((uint32_t)b & 8) ?
  863. TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
  864. break;
  865. }
  866. }
  867. } else { // receive
  868. packet->len = b->desc >> 16;
  869. if (packet->len > 0) {
  870. packet->index = 0;
  871. packet->next = NULL;
  872. if (rx_first[endpoint] == NULL) {
  873. //serial_print("rx 1st, epidx=");
  874. //serial_phex(endpoint);
  875. //serial_print(", packet=");
  876. //serial_phex32((uint32_t)packet);
  877. //serial_print("\n");
  878. rx_first[endpoint] = packet;
  879. } else {
  880. //serial_print("rx Nth, epidx=");
  881. //serial_phex(endpoint);
  882. //serial_print(", packet=");
  883. //serial_phex32((uint32_t)packet);
  884. //serial_print("\n");
  885. rx_last[endpoint]->next = packet;
  886. }
  887. rx_last[endpoint] = packet;
  888. usb_rx_byte_count_data[endpoint] += packet->len;
  889. // TODO: implement a per-endpoint maximum # of allocated
  890. // packets, so a flood of incoming data on 1 endpoint
  891. // doesn't starve the others if the user isn't reading
  892. // it regularly
  893. packet = usb_malloc();
  894. if (packet) {
  895. b->addr = packet->buf;
  896. b->desc = BDT_DESC(64,
  897. ((uint32_t)b & 8) ? DATA1 : DATA0);
  898. } else {
  899. //serial_print("starving ");
  900. //serial_phex(endpoint + 1);
  901. b->desc = 0;
  902. usb_rx_memory_needed++;
  903. }
  904. } else {
  905. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  906. }
  907. }
  908. }
  909. USB0_ISTAT = USB_ISTAT_TOKDNE;
  910. goto restart;
  911. }
  912. if (status & USB_ISTAT_USBRST /* 01 */ ) {
  913. //serial_print("reset\n");
  914. // initialize BDT toggle bits
  915. USB0_CTL = USB_CTL_ODDRST;
  916. ep0_tx_bdt_bank = 0;
  917. // set up buffers to receive Setup and OUT packets
  918. table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
  919. table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
  920. table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
  921. table[index(0, RX, ODD)].addr = ep0_rx1_buf;
  922. table[index(0, TX, EVEN)].desc = 0;
  923. table[index(0, TX, ODD)].desc = 0;
  924. // activate endpoint 0
  925. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  926. // clear all ending interrupts
  927. USB0_ERRSTAT = 0xFF;
  928. USB0_ISTAT = 0xFF;
  929. // set the address to zero during enumeration
  930. USB0_ADDR = 0;
  931. // enable other interrupts
  932. USB0_ERREN = 0xFF;
  933. USB0_INTEN = USB_INTEN_TOKDNEEN |
  934. USB_INTEN_SOFTOKEN |
  935. USB_INTEN_STALLEN |
  936. USB_INTEN_ERROREN |
  937. USB_INTEN_USBRSTEN |
  938. USB_INTEN_SLEEPEN;
  939. // is this necessary?
  940. USB0_CTL = USB_CTL_USBENSOFEN;
  941. return;
  942. }
  943. if ((status & USB_ISTAT_STALL /* 80 */ )) {
  944. //serial_print("stall:\n");
  945. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  946. USB0_ISTAT = USB_ISTAT_STALL;
  947. }
  948. if ((status & USB_ISTAT_ERROR /* 02 */ )) {
  949. uint8_t err = USB0_ERRSTAT;
  950. USB0_ERRSTAT = err;
  951. //serial_print("err:");
  952. //serial_phex(err);
  953. //serial_print("\n");
  954. USB0_ISTAT = USB_ISTAT_ERROR;
  955. }
  956. if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
  957. //serial_print("sleep\n");
  958. USB0_ISTAT = USB_ISTAT_SLEEP;
  959. }
  960. }
  961. void usb_init(void)
  962. {
  963. int i;
  964. //serial_begin(BAUD2DIV(115200));
  965. //serial_print("usb_init\n");
  966. usb_init_serialnumber();
  967. for (i=0; i <= NUM_ENDPOINTS*4; i++) {
  968. table[i].desc = 0;
  969. table[i].addr = 0;
  970. }
  971. // this basically follows the flowchart in the Kinetis
  972. // Quick Reference User Guide, Rev. 1, 03/2012, page 141
  973. // assume 48 MHz clock already running
  974. // SIM - enable clock
  975. SIM_SCGC4 |= SIM_SCGC4_USBOTG;
  976. #ifdef HAS_KINETIS_MPU
  977. MPU_RGDAAC0 |= 0x03000000;
  978. #endif
  979. // reset USB module
  980. //USB0_USBTRC0 = USB_USBTRC_USBRESET;
  981. //while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
  982. // set desc table base addr
  983. USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
  984. USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
  985. USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
  986. // clear all ISR flags
  987. USB0_ISTAT = 0xFF;
  988. USB0_ERRSTAT = 0xFF;
  989. USB0_OTGISTAT = 0xFF;
  990. //USB0_USBTRC0 |= 0x40; // undocumented bit
  991. // enable USB
  992. USB0_CTL = USB_CTL_USBENSOFEN;
  993. USB0_USBCTRL = 0;
  994. // enable reset interrupt
  995. USB0_INTEN = USB_INTEN_USBRSTEN;
  996. // enable interrupt in NVIC...
  997. NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
  998. NVIC_ENABLE_IRQ(IRQ_USBOTG);
  999. // enable d+ pullup
  1000. USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
  1001. }
  1002. #else // F_CPU < 20 MHz && defined(NUM_ENDPOINTS)
  1003. void usb_init(void)
  1004. {
  1005. }
  1006. #endif // F_CPU >= 20 MHz && defined(NUM_ENDPOINTS)