|
- /* Teensyduino Core Library
- * http://www.pjrc.com/teensy/
- * Copyright (c) 2013 PJRC.COM, LLC.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * 1. The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * 2. If the Software is incorporated into a build system that allows
- * selection among a list of target devices, then similar target
- * devices manufactured by PJRC.COM must be included in the list of
- * target devices and selectable in the same manner.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
- #include "core_pins.h"
- #include "pins_arduino.h"
- #include "HardwareSerial.h"
-
- #if 0
- // moved to pins_arduino.h
- struct digital_pin_bitband_and_config_table_struct {
- volatile uint32_t *reg;
- volatile uint32_t *config;
- };
- const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
-
- // compatibility macros
- #define digitalPinToPort(pin) (pin)
- #define digitalPinToBitMask(pin) (1)
- #define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
- #define portSetRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
- #define portClearRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
- #define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
- #define portInputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
- #define portModeRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
- #define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
- #endif
-
- //#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
- //#define analogInPinToBit(P) (P)
-
- #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
- #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
- //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
- //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
-
- const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
- {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
- };
-
-
-
-
- typedef void (*voidFuncPtr)(void);
- volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
-
- void init_pin_interrupts(void)
- {
- //SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
- NVIC_ENABLE_IRQ(IRQ_PORTA);
- NVIC_ENABLE_IRQ(IRQ_PORTB);
- NVIC_ENABLE_IRQ(IRQ_PORTC);
- NVIC_ENABLE_IRQ(IRQ_PORTD);
- NVIC_ENABLE_IRQ(IRQ_PORTE);
- // TODO: maybe these should be set to a lower priority
- // so if the user puts lots of slow code on attachInterrupt
- // fast interrupts will still be serviced quickly?
- }
-
- void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
- {
- _VectorsRam[irq + 16] = function;
- }
-
- void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
- {
- volatile uint32_t *config;
- uint32_t cfg, mask;
-
- if (pin >= CORE_NUM_DIGITAL) return;
- switch (mode) {
- case CHANGE: mask = 0x0B; break;
- case RISING: mask = 0x09; break;
- case FALLING: mask = 0x0A; break;
- case LOW: mask = 0x08; break;
- case HIGH: mask = 0x0C; break;
- default: return;
- }
- mask = (mask << 16) | 0x01000000;
- config = portConfigRegister(pin);
-
- __disable_irq();
- cfg = *config;
- cfg &= ~0x000F0000; // disable any previous interrupt
- *config = cfg;
- intFunc[pin] = function; // set the function pointer
- cfg |= mask;
- *config = cfg; // enable the new interrupt
- __enable_irq();
- }
-
- void detachInterrupt(uint8_t pin)
- {
- volatile uint32_t *config;
-
- config = portConfigRegister(pin);
- __disable_irq();
- *config = ((*config & ~0x000F0000) | 0x01000000);
- intFunc[pin] = NULL;
- __enable_irq();
- }
-
-
- void porta_isr(void)
- {
- uint32_t isfr = PORTA_ISFR;
- PORTA_ISFR = isfr;
- if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
- if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
- if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
- if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
- }
-
- void portb_isr(void)
- {
- uint32_t isfr = PORTB_ISFR;
- PORTB_ISFR = isfr;
- if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
- if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
- if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
- if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
- if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
- if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
- if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
- if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
- }
-
- void portc_isr(void)
- {
- // TODO: these are inefficent. Use CLZ somehow....
- uint32_t isfr = PORTC_ISFR;
- PORTC_ISFR = isfr;
- if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
- if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
- if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
- if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
- if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
- if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
- if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
- if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
- if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
- if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
- if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
- if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
- }
-
- void portd_isr(void)
- {
- uint32_t isfr = PORTD_ISFR;
- PORTD_ISFR = isfr;
- if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
- if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
- if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
- if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
- if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
- if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
- if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
- if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
- }
-
- void porte_isr(void)
- {
- uint32_t isfr = PORTE_ISFR;
- PORTE_ISFR = isfr;
- if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
- if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
- }
-
-
-
-
- unsigned long rtc_get(void)
- {
- return RTC_TSR;
- }
-
- void rtc_set(unsigned long t)
- {
- RTC_SR = 0;
- RTC_TPR = 0;
- RTC_TSR = t;
- RTC_SR = RTC_SR_TCE;
- }
-
-
- // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
- // For example, adjust = -100 is slows the clock by 11.92 ppm
- //
- void rtc_compensate(int adjust)
- {
- uint32_t comp, interval, tcr;
-
- // This simple approach tries to maximize the interval.
- // Perhaps minimizing TCR would be better, so the
- // compensation is distributed more evenly across
- // many seconds, rather than saving it all up and then
- // altering one second up to +/- 0.38%
- if (adjust >= 0) {
- comp = adjust;
- interval = 256;
- while (1) {
- tcr = comp * interval;
- if (tcr < 128*256) break;
- if (--interval == 1) break;
- }
- tcr = tcr >> 8;
- } else {
- comp = -adjust;
- interval = 256;
- while (1) {
- tcr = comp * interval;
- if (tcr < 129*256) break;
- if (--interval == 1) break;
- }
- tcr = tcr >> 8;
- tcr = 256 - tcr;
- }
- RTC_TCR = ((interval - 1) << 8) | tcr;
- }
-
- #if 0
- // TODO: build system should define this
- // so RTC is automatically initialized to approx correct time
- // at least when the program begins running right after upload
- #ifndef TIME_T
- #define TIME_T 1350160272
- #endif
-
- void init_rtc(void)
- {
- serial_print("init_rtc\n");
- //SIM_SCGC6 |= SIM_SCGC6_RTC;
-
- // enable the RTC crystal oscillator, for approx 12pf crystal
- if (!(RTC_CR & RTC_CR_OSCE)) {
- serial_print("start RTC oscillator\n");
- RTC_SR = 0;
- RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
- }
- // should wait for crystal to stabilize.....
-
- serial_print("SR=");
- serial_phex32(RTC_SR);
- serial_print("\n");
- serial_print("CR=");
- serial_phex32(RTC_CR);
- serial_print("\n");
- serial_print("TSR=");
- serial_phex32(RTC_TSR);
- serial_print("\n");
- serial_print("TCR=");
- serial_phex32(RTC_TCR);
- serial_print("\n");
-
- if (RTC_SR & RTC_SR_TIF) {
- // enable the RTC
- RTC_SR = 0;
- RTC_TPR = 0;
- RTC_TSR = TIME_T;
- RTC_SR = RTC_SR_TCE;
- }
- }
- #endif
-
- extern void usb_init(void);
-
-
- // create a default PWM at the same 488.28 Hz as Arduino Uno
-
- #if F_BUS == 60000000
- #define DEFAULT_FTM_MOD (61440 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_BUS == 56000000
- #define DEFAULT_FTM_MOD (57344 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_BUS == 48000000
- #define DEFAULT_FTM_MOD (49152 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_BUS == 40000000
- #define DEFAULT_FTM_MOD (40960 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_BUS == 36000000
- #define DEFAULT_FTM_MOD (36864 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_BUS == 24000000
- #define DEFAULT_FTM_MOD (49152 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_BUS == 16000000
- #define DEFAULT_FTM_MOD (32768 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_BUS == 8000000
- #define DEFAULT_FTM_MOD (16384 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_BUS == 4000000
- #define DEFAULT_FTM_MOD (8192 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_BUS == 2000000
- #define DEFAULT_FTM_MOD (4096 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #endif
-
- //void init_pins(void)
- void _init_Teensyduino_internal_(void)
- {
- init_pin_interrupts();
-
- //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
- //SIM_SCGC6 |= SIM_SCGC6_FTM1;
- FTM0_CNT = 0;
- FTM0_MOD = DEFAULT_FTM_MOD;
- FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
- FTM0_C1SC = 0x28;
- FTM0_C2SC = 0x28;
- FTM0_C3SC = 0x28;
- FTM0_C4SC = 0x28;
- FTM0_C5SC = 0x28;
- FTM0_C6SC = 0x28;
- FTM0_C7SC = 0x28;
- FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- FTM1_CNT = 0;
- FTM1_MOD = DEFAULT_FTM_MOD;
- FTM1_C0SC = 0x28;
- FTM1_C1SC = 0x28;
- FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- #if defined(__MK20DX256__)
- FTM2_CNT = 0;
- FTM2_MOD = DEFAULT_FTM_MOD;
- FTM2_C0SC = 0x28;
- FTM2_C1SC = 0x28;
- FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- #endif
-
- analog_init();
- //delay(100); // TODO: this is not necessary, right?
- delay(4);
- usb_init();
- }
-
-
-
- static uint8_t analog_write_res = 8;
-
- // SOPT4 is SIM select clocks?
- // FTM is clocked by the bus clock, either 24 or 48 MHz
- // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
- // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
-
- void analogWrite(uint8_t pin, int val)
- {
- uint32_t cval, max;
-
- #if defined(__MK20DX256__)
- if (pin == A14) {
- uint8_t res = analog_write_res;
- if (res < 12) {
- val <<= 12 - res;
- } else if (res > 12) {
- val >>= res - 12;
- }
- analogWriteDAC0(val);
- return;
- }
- #endif
-
- max = 1 << analog_write_res;
- if (val <= 0) {
- digitalWrite(pin, LOW);
- pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
- return;
- } else if (val >= max) {
- digitalWrite(pin, HIGH);
- pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
- return;
- }
-
- //serial_print("analogWrite\n");
- //serial_print("val = ");
- //serial_phex32(val);
- //serial_print("\n");
- //serial_print("analog_write_res = ");
- //serial_phex(analog_write_res);
- //serial_print("\n");
- if (pin == 3 || pin == 4) {
- cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
- #if defined(__MK20DX256__)
- } else if (pin == 25 || pin == 32) {
- cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
- #endif
- } else {
- cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
- }
- //serial_print("cval = ");
- //serial_phex32(cval);
- //serial_print("\n");
- switch (pin) {
- case 3: // PTA12, FTM1_CH0
- FTM1_C0V = cval;
- CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 4: // PTA13, FTM1_CH1
- FTM1_C1V = cval;
- CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 5: // PTD7, FTM0_CH7
- FTM0_C7V = cval;
- CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 6: // PTD4, FTM0_CH4
- FTM0_C4V = cval;
- CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 9: // PTC3, FTM0_CH2
- FTM0_C2V = cval;
- CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 10: // PTC4, FTM0_CH3
- FTM0_C3V = cval;
- CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 20: // PTD5, FTM0_CH5
- FTM0_C5V = cval;
- CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 21: // PTD6, FTM0_CH6
- FTM0_C6V = cval;
- CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 22: // PTC1, FTM0_CH0
- FTM0_C0V = cval;
- CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 23: // PTC2, FTM0_CH1
- FTM0_C1V = cval;
- CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #if defined(__MK20DX256__)
- case 32: // PTB18, FTM2_CH0
- FTM2_C0V = cval;
- CORE_PIN32_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- case 25: // PTB19, FTM1_CH1
- FTM2_C1V = cval;
- CORE_PIN25_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- default:
- digitalWrite(pin, (val > 127) ? HIGH : LOW);
- pinMode(pin, OUTPUT);
- }
- }
-
- void analogWriteRes(uint32_t bits)
- {
- if (bits < 1) {
- bits = 1;
- } else if (bits > 16) {
- bits = 16;
- }
- analog_write_res = bits;
- }
-
- void analogWriteFrequency(uint8_t pin, uint32_t frequency)
- {
- uint32_t minfreq, prescale, mod;
-
- //serial_print("analogWriteFrequency: pin = ");
- //serial_phex(pin);
- //serial_print(", freq = ");
- //serial_phex32(frequency);
- //serial_print("\n");
- for (prescale = 0; prescale < 7; prescale++) {
- minfreq = (F_BUS >> 16) >> prescale;
- if (frequency > minfreq) break;
- }
- //serial_print("F_BUS = ");
- //serial_phex32(F_BUS >> prescale);
- //serial_print("\n");
- //serial_print("prescale = ");
- //serial_phex(prescale);
- //serial_print("\n");
- //mod = ((F_BUS >> prescale) / frequency) - 1;
- mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
- if (mod > 65535) mod = 65535;
- //serial_print("mod = ");
- //serial_phex32(mod);
- //serial_print("\n");
- if (pin == 3 || pin == 4) {
- FTM1_SC = 0;
- FTM1_CNT = 0;
- FTM1_MOD = mod;
- FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
- } else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
- (pin >= 20 && pin <= 23)) {
- FTM0_SC = 0;
- FTM0_CNT = 0;
- FTM0_MOD = mod;
- FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
- }
- }
-
-
-
-
- // TODO: startup code needs to initialize all pins to GPIO mode, input by default
-
- void digitalWrite(uint8_t pin, uint8_t val)
- {
- if (pin >= CORE_NUM_DIGITAL) return;
- if (*portModeRegister(pin)) {
- if (val) {
- *portSetRegister(pin) = 1;
- } else {
- *portClearRegister(pin) = 1;
- }
- } else {
- volatile uint32_t *config = portConfigRegister(pin);
- if (val) {
- // TODO use bitband for atomic read-mod-write
- *config |= (PORT_PCR_PE | PORT_PCR_PS);
- //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
- } else {
- // TODO use bitband for atomic read-mod-write
- *config &= ~(PORT_PCR_PE);
- //*config = PORT_PCR_MUX(1);
- }
- }
-
- }
-
- uint8_t digitalRead(uint8_t pin)
- {
- if (pin >= CORE_NUM_DIGITAL) return 0;
- return *portInputRegister(pin);
- }
-
-
-
- void pinMode(uint8_t pin, uint8_t mode)
- {
- volatile uint32_t *config;
-
- if (pin >= CORE_NUM_DIGITAL) return;
- config = portConfigRegister(pin);
-
- if (mode == OUTPUT) {
- *portModeRegister(pin) = 1;
- *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
- } else {
- *portModeRegister(pin) = 0;
- if (mode == INPUT) {
- *config = PORT_PCR_MUX(1);
- } else {
- *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
- }
- }
- }
-
-
- void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
- {
- if (bitOrder == LSBFIRST) {
- shiftOut_lsbFirst(dataPin, clockPin, value);
- } else {
- shiftOut_msbFirst(dataPin, clockPin, value);
- }
- }
-
- void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
- {
- uint8_t mask;
- for (mask=0x01; mask; mask <<= 1) {
- digitalWrite(dataPin, value & mask);
- digitalWrite(clockPin, HIGH);
- digitalWrite(clockPin, LOW);
- }
- }
-
- void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
- {
- uint8_t mask;
- for (mask=0x80; mask; mask >>= 1) {
- digitalWrite(dataPin, value & mask);
- digitalWrite(clockPin, HIGH);
- digitalWrite(clockPin, LOW);
- }
- }
-
- uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
- {
- if (bitOrder == LSBFIRST) {
- return shiftIn_lsbFirst(dataPin, clockPin);
- } else {
- return shiftIn_msbFirst(dataPin, clockPin);
- }
- }
-
- uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
- {
- uint8_t mask, value=0;
- for (mask=0x01; mask; mask <<= 1) {
- digitalWrite(clockPin, HIGH);
- if (digitalRead(dataPin)) value |= mask;
- digitalWrite(clockPin, LOW);
- }
- return value;
- }
-
- uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
- {
- uint8_t mask, value=0;
- for (mask=0x80; mask; mask >>= 1) {
- digitalWrite(clockPin, HIGH);
- if (digitalRead(dataPin)) value |= mask;
- digitalWrite(clockPin, LOW);
- }
- return value;
- }
-
-
-
- // the systick interrupt is supposed to increment this at 1 kHz rate
- volatile uint32_t systick_millis_count = 0;
-
- //uint32_t systick_current, systick_count, systick_istatus; // testing only
-
- uint32_t micros(void)
- {
- uint32_t count, current, istatus;
-
- __disable_irq();
- current = SYST_CVR;
- count = systick_millis_count;
- istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
- __enable_irq();
- //systick_current = current;
- //systick_count = count;
- //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
- if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
- current = ((F_CPU / 1000) - 1) - current;
- return count * 1000 + current / (F_CPU / 1000000);
- }
-
- void delay(uint32_t ms)
- {
- uint32_t start = micros();
-
- if (ms > 0) {
- while (1) {
- if ((micros() - start) >= 1000) {
- ms--;
- if (ms == 0) return;
- start += 1000;
- }
- yield();
- }
- }
- }
-
- // TODO: verify these result in correct timeouts...
- #if F_CPU == 168000000
- #define PULSEIN_LOOPS_PER_USEC 25
- #elif F_CPU == 144000000
- #define PULSEIN_LOOPS_PER_USEC 21
- #elif F_CPU == 120000000
- #define PULSEIN_LOOPS_PER_USEC 18
- #elif F_CPU == 96000000
- #define PULSEIN_LOOPS_PER_USEC 14
- #elif F_CPU == 72000000
- #define PULSEIN_LOOPS_PER_USEC 10
- #elif F_CPU == 48000000
- #define PULSEIN_LOOPS_PER_USEC 7
- #elif F_CPU == 24000000
- #define PULSEIN_LOOPS_PER_USEC 4
- #elif F_CPU == 16000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 8000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 4000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 2000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #endif
-
-
- uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
-
- // wait for any previous pulse to end
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- // wait for the pulse to start
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
-
- // wait for any previous pulse to end
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- // wait for the pulse to start
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- // TODO: an inline version should handle the common case where state is const
- uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
- {
- if (pin >= CORE_NUM_DIGITAL) return 0;
- if (state) return pulseIn_high(portInputRegister(pin), timeout);
- return pulseIn_low(portInputRegister(pin), timeout);;
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|