Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

655 lines
19KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL1_TX_BUFFER_SIZE
  37. #define SERIAL1_TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL1_RX_BUFFER_SIZE
  40. #define SERIAL1_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL1_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL1_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL1_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL1_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL1_TX_BUFFER_SIZE > 255
  76. static volatile uint16_t tx_buffer_head = 0;
  77. static volatile uint16_t tx_buffer_tail = 0;
  78. #else
  79. static volatile uint8_t tx_buffer_head = 0;
  80. static volatile uint8_t tx_buffer_tail = 0;
  81. #endif
  82. #if SERIAL1_RX_BUFFER_SIZE > 255
  83. static volatile uint16_t rx_buffer_head = 0;
  84. static volatile uint16_t rx_buffer_tail = 0;
  85. #else
  86. static volatile uint8_t rx_buffer_head = 0;
  87. static volatile uint8_t rx_buffer_tail = 0;
  88. #endif
  89. static uint8_t rx_pin_num = 0;
  90. static uint8_t tx_pin_num = 1;
  91. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  92. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  93. #ifdef HAS_KINETISK_UART0_FIFO
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  95. #else
  96. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  97. #endif
  98. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  99. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  100. #define C2_TX_INACTIVE C2_ENABLE
  101. void serial_begin(uint32_t divisor)
  102. {
  103. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  104. rx_buffer_head = 0;
  105. rx_buffer_tail = 0;
  106. tx_buffer_head = 0;
  107. tx_buffer_tail = 0;
  108. transmitting = 0;
  109. switch (rx_pin_num) {
  110. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  112. #if defined(KINETISL)
  113. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  114. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  115. #endif
  116. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  117. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  118. #endif
  119. }
  120. switch (tx_pin_num) {
  121. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  122. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  123. #if defined(KINETISL)
  124. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  125. case 24: CORE_PIN24_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(4); break;
  126. #endif
  127. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  128. case 26: CORE_PIN26_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  129. #endif
  130. }
  131. #if defined(HAS_KINETISK_UART0)
  132. if (divisor < 32) divisor = 32;
  133. UART0_BDH = (divisor >> 13) & 0x1F;
  134. UART0_BDL = (divisor >> 5) & 0xFF;
  135. UART0_C4 = divisor & 0x1F;
  136. #ifdef HAS_KINETISK_UART0_FIFO
  137. UART0_C1 = UART_C1_ILT;
  138. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  139. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  140. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  141. #else
  142. UART0_C1 = 0;
  143. UART0_PFIFO = 0;
  144. #endif
  145. #elif defined(HAS_KINETISL_UART0)
  146. if (divisor < 1) divisor = 1;
  147. UART0_BDH = (divisor >> 8) & 0x1F;
  148. UART0_BDL = divisor & 0xFF;
  149. UART0_C1 = 0;
  150. #endif
  151. UART0_C2 = C2_TX_INACTIVE;
  152. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  153. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  154. }
  155. void serial_format(uint32_t format)
  156. {
  157. uint8_t c;
  158. c = UART0_C1;
  159. c = (c & ~0x13) | (format & 0x03); // configure parity
  160. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  161. UART0_C1 = c;
  162. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  163. c = UART0_S2 & ~0x10;
  164. if (format & 0x10) c |= 0x10; // rx invert
  165. UART0_S2 = c;
  166. c = UART0_C3 & ~0x10;
  167. if (format & 0x20) c |= 0x10; // tx invert
  168. UART0_C3 = c;
  169. #ifdef SERIAL_9BIT_SUPPORT
  170. c = UART0_C4 & 0x1F;
  171. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  172. UART0_C4 = c;
  173. use9Bits = format & 0x80;
  174. #endif
  175. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  176. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  177. if ( format & 0x100) {
  178. uint8_t bdl = UART0_BDL;
  179. UART0_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  180. UART0_BDL = bdl; // Says BDH not acted on until BDL is written
  181. }
  182. #endif
  183. }
  184. void serial_end(void)
  185. {
  186. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  187. while (transmitting) yield(); // wait for buffered data to send
  188. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  189. UART0_C2 = 0;
  190. switch (rx_pin_num) {
  191. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  192. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  193. #if defined(KINETISL)
  194. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  195. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  196. #endif
  197. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  198. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  199. #endif
  200. }
  201. switch (tx_pin_num & 127) {
  202. case 1: CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  203. case 5: CORE_PIN5_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  204. #if defined(KINETISL)
  205. case 4: CORE_PIN4_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  206. case 24: CORE_PIN24_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  207. #endif
  208. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  209. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  210. #endif
  211. }
  212. rx_buffer_head = 0;
  213. rx_buffer_tail = 0;
  214. if (rts_pin) rts_deassert();
  215. }
  216. void serial_set_transmit_pin(uint8_t pin)
  217. {
  218. while (transmitting) ;
  219. pinMode(pin, OUTPUT);
  220. digitalWrite(pin, LOW);
  221. transmit_pin = portOutputRegister(pin);
  222. #if defined(KINETISL)
  223. transmit_mask = digitalPinToBitMask(pin);
  224. #endif
  225. }
  226. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  227. {
  228. uint32_t cfg;
  229. if (opendrain) pin |= 128;
  230. if (pin == tx_pin_num) return;
  231. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  232. switch (tx_pin_num & 127) {
  233. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  234. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  235. #if defined(KINETISL)
  236. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  237. case 24: CORE_PIN24_CONFIG = 0; break; // PTE20
  238. #endif
  239. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  240. case 26: CORE_PIN26_CONFIG = 0; break; //PTA14
  241. #endif
  242. }
  243. if (opendrain) {
  244. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  245. } else {
  246. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  247. }
  248. switch (pin & 127) {
  249. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  250. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  251. #if defined(KINETISL)
  252. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  253. case 24: CORE_PIN24_CONFIG = cfg | PORT_PCR_MUX(4); break;
  254. #endif
  255. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  256. case 26: CORE_PIN26_CONFIG = cfg | PORT_PCR_MUX(3); break;
  257. #endif
  258. }
  259. }
  260. tx_pin_num = pin;
  261. }
  262. void serial_set_rx(uint8_t pin)
  263. {
  264. if (pin == rx_pin_num) return;
  265. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  266. switch (rx_pin_num) {
  267. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  268. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  269. #if defined(KINETISL)
  270. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  271. case 25: CORE_PIN25_CONFIG = 0; break; // PTE21
  272. #endif
  273. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  274. case 27: CORE_PIN27_CONFIG = 0; break; // PTA15
  275. #endif
  276. }
  277. switch (pin) {
  278. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  279. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  280. #if defined(KINETISL)
  281. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  282. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  283. #endif
  284. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  285. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  286. #endif
  287. }
  288. }
  289. rx_pin_num = pin;
  290. }
  291. int serial_set_rts(uint8_t pin)
  292. {
  293. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  294. if (pin < CORE_NUM_DIGITAL) {
  295. rts_pin = portOutputRegister(pin);
  296. #if defined(KINETISL)
  297. rts_mask = digitalPinToBitMask(pin);
  298. #endif
  299. pinMode(pin, OUTPUT);
  300. rts_assert();
  301. } else {
  302. rts_pin = NULL;
  303. return 0;
  304. }
  305. /*
  306. if (pin == 6) {
  307. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  308. } else if (pin == 19) {
  309. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  310. } else {
  311. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  312. return 0;
  313. }
  314. UART0_MODEM |= UART_MODEM_RXRTSE;
  315. */
  316. return 1;
  317. }
  318. int serial_set_cts(uint8_t pin)
  319. {
  320. #if defined(KINETISK)
  321. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  322. if (pin == 18) {
  323. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  324. } else if (pin == 20) {
  325. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  326. } else {
  327. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  328. return 0;
  329. }
  330. UART0_MODEM |= UART_MODEM_TXCTSE;
  331. return 1;
  332. #else
  333. return 0;
  334. #endif
  335. }
  336. void serial_putchar(uint32_t c)
  337. {
  338. uint32_t head, n;
  339. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  340. if (transmit_pin) transmit_assert();
  341. head = tx_buffer_head;
  342. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  343. while (tx_buffer_tail == head) {
  344. int priority = nvic_execution_priority();
  345. if (priority <= IRQ_PRIORITY) {
  346. if ((UART0_S1 & UART_S1_TDRE)) {
  347. uint32_t tail = tx_buffer_tail;
  348. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  349. n = tx_buffer[tail];
  350. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  351. UART0_D = n;
  352. tx_buffer_tail = tail;
  353. }
  354. } else if (priority >= 256) {
  355. yield();
  356. }
  357. }
  358. tx_buffer[head] = c;
  359. transmitting = 1;
  360. tx_buffer_head = head;
  361. UART0_C2 = C2_TX_ACTIVE;
  362. }
  363. #ifdef HAS_KINETISK_UART0_FIFO
  364. void serial_write(const void *buf, unsigned int count)
  365. {
  366. const uint8_t *p = (const uint8_t *)buf;
  367. const uint8_t *end = p + count;
  368. uint32_t head, n;
  369. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  370. if (transmit_pin) transmit_assert();
  371. while (p < end) {
  372. head = tx_buffer_head;
  373. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  374. if (tx_buffer_tail == head) {
  375. UART0_C2 = C2_TX_ACTIVE;
  376. do {
  377. int priority = nvic_execution_priority();
  378. if (priority <= IRQ_PRIORITY) {
  379. if ((UART0_S1 & UART_S1_TDRE)) {
  380. uint32_t tail = tx_buffer_tail;
  381. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  382. n = tx_buffer[tail];
  383. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  384. UART0_D = n;
  385. tx_buffer_tail = tail;
  386. }
  387. } else if (priority >= 256) {
  388. yield();
  389. }
  390. } while (tx_buffer_tail == head);
  391. }
  392. tx_buffer[head] = *p++;
  393. transmitting = 1;
  394. tx_buffer_head = head;
  395. }
  396. UART0_C2 = C2_TX_ACTIVE;
  397. }
  398. #else
  399. void serial_write(const void *buf, unsigned int count)
  400. {
  401. const uint8_t *p = (const uint8_t *)buf;
  402. while (count-- > 0) serial_putchar(*p++);
  403. }
  404. #endif
  405. void serial_flush(void)
  406. {
  407. while (transmitting) yield(); // wait
  408. }
  409. int serial_write_buffer_free(void)
  410. {
  411. uint32_t head, tail;
  412. head = tx_buffer_head;
  413. tail = tx_buffer_tail;
  414. if (head >= tail) return SERIAL1_TX_BUFFER_SIZE - 1 - head + tail;
  415. return tail - head - 1;
  416. }
  417. int serial_available(void)
  418. {
  419. uint32_t head, tail;
  420. head = rx_buffer_head;
  421. tail = rx_buffer_tail;
  422. if (head >= tail) return head - tail;
  423. return SERIAL1_RX_BUFFER_SIZE + head - tail;
  424. }
  425. int serial_getchar(void)
  426. {
  427. uint32_t head, tail;
  428. int c;
  429. head = rx_buffer_head;
  430. tail = rx_buffer_tail;
  431. if (head == tail) return -1;
  432. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  433. c = rx_buffer[tail];
  434. rx_buffer_tail = tail;
  435. if (rts_pin) {
  436. int avail;
  437. if (head >= tail) avail = head - tail;
  438. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  439. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  440. }
  441. return c;
  442. }
  443. int serial_peek(void)
  444. {
  445. uint32_t head, tail;
  446. head = rx_buffer_head;
  447. tail = rx_buffer_tail;
  448. if (head == tail) return -1;
  449. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  450. return rx_buffer[tail];
  451. }
  452. void serial_clear(void)
  453. {
  454. #ifdef HAS_KINETISK_UART0_FIFO
  455. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  456. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  457. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  458. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  459. #endif
  460. rx_buffer_head = rx_buffer_tail;
  461. if (rts_pin) rts_assert();
  462. }
  463. // status interrupt combines
  464. // Transmit data below watermark UART_S1_TDRE
  465. // Transmit complete UART_S1_TC
  466. // Idle line UART_S1_IDLE
  467. // Receive data above watermark UART_S1_RDRF
  468. // LIN break detect UART_S2_LBKDIF
  469. // RxD pin active edge UART_S2_RXEDGIF
  470. void uart0_status_isr(void)
  471. {
  472. uint32_t head, tail, n;
  473. uint8_t c;
  474. #ifdef HAS_KINETISK_UART0_FIFO
  475. uint32_t newhead;
  476. uint8_t avail;
  477. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  478. __disable_irq();
  479. avail = UART0_RCFIFO;
  480. if (avail == 0) {
  481. // The only way to clear the IDLE interrupt flag is
  482. // to read the data register. But reading with no
  483. // data causes a FIFO underrun, which causes the
  484. // FIFO to return corrupted data. If anyone from
  485. // Freescale reads this, what a poor design! There
  486. // write should be a write-1-to-clear for IDLE.
  487. c = UART0_D;
  488. // flushing the fifo recovers from the underrun,
  489. // but there's a possible race condition where a
  490. // new character could be received between reading
  491. // RCFIFO == 0 and flushing the FIFO. To minimize
  492. // the chance, interrupts are disabled so a higher
  493. // priority interrupt (hopefully) doesn't delay.
  494. // TODO: change this to disabling the IDLE interrupt
  495. // which won't be simple, since we already manage
  496. // which transmit interrupts are enabled.
  497. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  498. __enable_irq();
  499. } else {
  500. __enable_irq();
  501. head = rx_buffer_head;
  502. tail = rx_buffer_tail;
  503. do {
  504. if (use9Bits && (UART0_C3 & 0x80)) {
  505. n = UART0_D | 0x100;
  506. } else {
  507. n = UART0_D;
  508. }
  509. newhead = head + 1;
  510. if (newhead >= SERIAL1_RX_BUFFER_SIZE) newhead = 0;
  511. if (newhead != tail) {
  512. head = newhead;
  513. rx_buffer[head] = n;
  514. }
  515. } while (--avail > 0);
  516. rx_buffer_head = head;
  517. if (rts_pin) {
  518. int avail;
  519. if (head >= tail) avail = head - tail;
  520. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  521. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  522. }
  523. }
  524. }
  525. c = UART0_C2;
  526. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  527. head = tx_buffer_head;
  528. tail = tx_buffer_tail;
  529. do {
  530. if (tail == head) break;
  531. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  532. avail = UART0_S1;
  533. n = tx_buffer[tail];
  534. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  535. UART0_D = n;
  536. } while (UART0_TCFIFO < 8);
  537. tx_buffer_tail = tail;
  538. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  539. }
  540. #else
  541. if (UART0_S1 & UART_S1_RDRF) {
  542. if (use9Bits && (UART0_C3 & 0x80)) {
  543. n = UART0_D | 0x100;
  544. } else {
  545. n = UART0_D;
  546. }
  547. head = rx_buffer_head + 1;
  548. if (head >= SERIAL1_RX_BUFFER_SIZE) head = 0;
  549. if (head != rx_buffer_tail) {
  550. rx_buffer[head] = n;
  551. rx_buffer_head = head;
  552. }
  553. }
  554. c = UART0_C2;
  555. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  556. head = tx_buffer_head;
  557. tail = tx_buffer_tail;
  558. if (head == tail) {
  559. UART0_C2 = C2_TX_COMPLETING;
  560. } else {
  561. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  562. n = tx_buffer[tail];
  563. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  564. UART0_D = n;
  565. tx_buffer_tail = tail;
  566. }
  567. }
  568. #endif
  569. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  570. transmitting = 0;
  571. if (transmit_pin) transmit_deassert();
  572. UART0_C2 = C2_TX_INACTIVE;
  573. }
  574. }
  575. void serial_print(const char *p)
  576. {
  577. while (*p) {
  578. char c = *p++;
  579. if (c == '\n') serial_putchar('\r');
  580. serial_putchar(c);
  581. }
  582. }
  583. static void serial_phex1(uint32_t n)
  584. {
  585. n &= 15;
  586. if (n < 10) {
  587. serial_putchar('0' + n);
  588. } else {
  589. serial_putchar('A' - 10 + n);
  590. }
  591. }
  592. void serial_phex(uint32_t n)
  593. {
  594. serial_phex1(n >> 4);
  595. serial_phex1(n);
  596. }
  597. void serial_phex16(uint32_t n)
  598. {
  599. serial_phex(n >> 8);
  600. serial_phex(n);
  601. }
  602. void serial_phex32(uint32_t n)
  603. {
  604. serial_phex(n >> 24);
  605. serial_phex(n >> 16);
  606. serial_phex(n >> 8);
  607. serial_phex(n);
  608. }