Teensy 4.1 core updated for C++20

376 lines
10KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #ifdef HAS_KINETISK_UART4
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #ifndef SERIAL5_TX_BUFFER_SIZE
  38. #define SERIAL5_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  39. #endif
  40. #ifndef SERIAL5_RX_BUFFER_SIZE
  41. #define SERIAL5_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  42. #endif
  43. #define RTS_HIGH_WATERMARK (SERIAL5_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  44. #define RTS_LOW_WATERMARK (SERIAL5_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  45. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  46. ////////////////////////////////////////////////////////////////
  47. // changes not recommended below this point....
  48. ////////////////////////////////////////////////////////////////
  49. #ifdef SERIAL_9BIT_SUPPORT
  50. static uint8_t use9Bits = 0;
  51. #define BUFTYPE uint16_t
  52. #else
  53. #define BUFTYPE uint8_t
  54. #define use9Bits 0
  55. #endif
  56. static volatile BUFTYPE tx_buffer[SERIAL5_TX_BUFFER_SIZE];
  57. static volatile BUFTYPE rx_buffer[SERIAL5_RX_BUFFER_SIZE];
  58. static volatile uint8_t transmitting = 0;
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #if SERIAL5_TX_BUFFER_SIZE > 255
  66. static volatile uint16_t tx_buffer_head = 0;
  67. static volatile uint16_t tx_buffer_tail = 0;
  68. #else
  69. static volatile uint8_t tx_buffer_head = 0;
  70. static volatile uint8_t tx_buffer_tail = 0;
  71. #endif
  72. #if SERIAL5_RX_BUFFER_SIZE > 255
  73. static volatile uint16_t rx_buffer_head = 0;
  74. static volatile uint16_t rx_buffer_tail = 0;
  75. #else
  76. static volatile uint8_t rx_buffer_head = 0;
  77. static volatile uint8_t rx_buffer_tail = 0;
  78. #endif
  79. static uint8_t tx_pin_num = 33;
  80. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  81. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  82. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  83. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  84. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  85. #define C2_TX_INACTIVE C2_ENABLE
  86. void serial5_begin(uint32_t divisor)
  87. {
  88. SIM_SCGC1 |= SIM_SCGC1_UART4; // turn on clock, TODO: use bitband
  89. rx_buffer_head = 0;
  90. rx_buffer_tail = 0;
  91. tx_buffer_head = 0;
  92. tx_buffer_tail = 0;
  93. transmitting = 0;
  94. CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  95. CORE_PIN33_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  96. if (divisor < 32) divisor = 32;
  97. UART4_BDH = (divisor >> 13) & 0x1F;
  98. UART4_BDL = (divisor >> 5) & 0xFF;
  99. UART4_C4 = divisor & 0x1F;
  100. UART4_C1 = 0;
  101. UART4_PFIFO = 0;
  102. UART4_C2 = C2_TX_INACTIVE;
  103. NVIC_SET_PRIORITY(IRQ_UART4_STATUS, IRQ_PRIORITY);
  104. NVIC_ENABLE_IRQ(IRQ_UART4_STATUS);
  105. }
  106. void serial5_format(uint32_t format)
  107. {
  108. uint8_t c;
  109. c = UART4_C1;
  110. c = (c & ~0x13) | (format & 0x03); // configure parity
  111. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  112. UART4_C1 = c;
  113. if ((format & 0x0F) == 0x04) UART4_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  114. c = UART4_S2 & ~0x10;
  115. if (format & 0x10) c |= 0x10; // rx invert
  116. UART4_S2 = c;
  117. c = UART4_C3 & ~0x10;
  118. if (format & 0x20) c |= 0x10; // tx invert
  119. UART4_C3 = c;
  120. #ifdef SERIAL_9BIT_SUPPORT
  121. c = UART4_C4 & 0x1F;
  122. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  123. UART4_C4 = c;
  124. use9Bits = format & 0x80;
  125. #endif
  126. // For T3.5/T3.6 See about turning on 2 stop bit mode
  127. if ( format & 0x100) {
  128. uint8_t bdl = UART4_BDL;
  129. UART4_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  130. UART4_BDL = bdl; // Says BDH not acted on until BDL is written
  131. }
  132. }
  133. void serial5_end(void)
  134. {
  135. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
  136. while (transmitting) yield(); // wait for buffered data to send
  137. NVIC_DISABLE_IRQ(IRQ_UART4_STATUS);
  138. UART4_C2 = 0;
  139. CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  140. CORE_PIN33_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  141. UART4_S1;
  142. UART4_D; // clear leftover error status
  143. rx_buffer_head = 0;
  144. rx_buffer_tail = 0;
  145. if (rts_pin) rts_deassert();
  146. }
  147. void serial5_set_transmit_pin(uint8_t pin)
  148. {
  149. while (transmitting) ;
  150. pinMode(pin, OUTPUT);
  151. digitalWrite(pin, LOW);
  152. transmit_pin = portOutputRegister(pin);
  153. }
  154. void serial5_set_tx(uint8_t pin, uint8_t opendrain)
  155. {
  156. uint32_t cfg;
  157. if (opendrain) pin |= 128;
  158. if (pin == tx_pin_num) return;
  159. if ((SIM_SCGC1 & SIM_SCGC1_UART4)) {
  160. switch (tx_pin_num & 127) {
  161. case 33: CORE_PIN33_CONFIG = 0; break; // PTE24
  162. }
  163. if (opendrain) {
  164. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  165. } else {
  166. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  167. }
  168. switch (pin & 127) {
  169. case 33: CORE_PIN33_CONFIG = cfg | PORT_PCR_MUX(3); break;
  170. }
  171. }
  172. tx_pin_num = pin;
  173. }
  174. void serial5_set_rx(uint8_t pin)
  175. {
  176. }
  177. int serial5_set_rts(uint8_t pin)
  178. {
  179. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
  180. if (pin < CORE_NUM_DIGITAL) {
  181. rts_pin = portOutputRegister(pin);
  182. pinMode(pin, OUTPUT);
  183. rts_assert();
  184. } else {
  185. rts_pin = NULL;
  186. return 0;
  187. }
  188. return 1;
  189. }
  190. int serial5_set_cts(uint8_t pin)
  191. {
  192. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
  193. if (pin == 24) {
  194. CORE_PIN24_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  195. } else {
  196. UART4_MODEM &= ~UART_MODEM_TXCTSE;
  197. return 0;
  198. }
  199. UART4_MODEM |= UART_MODEM_TXCTSE;
  200. return 1;
  201. }
  202. void serial5_putchar(uint32_t c)
  203. {
  204. uint32_t head, n;
  205. if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
  206. if (transmit_pin) transmit_assert();
  207. head = tx_buffer_head;
  208. if (++head >= SERIAL5_TX_BUFFER_SIZE) head = 0;
  209. while (tx_buffer_tail == head) {
  210. int priority = nvic_execution_priority();
  211. if (priority <= IRQ_PRIORITY) {
  212. if ((UART4_S1 & UART_S1_TDRE)) {
  213. uint32_t tail = tx_buffer_tail;
  214. if (++tail >= SERIAL5_TX_BUFFER_SIZE) tail = 0;
  215. n = tx_buffer[tail];
  216. if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
  217. UART4_D = n;
  218. tx_buffer_tail = tail;
  219. }
  220. } else if (priority >= 256) {
  221. yield(); // wait
  222. }
  223. }
  224. tx_buffer[head] = c;
  225. transmitting = 1;
  226. tx_buffer_head = head;
  227. UART4_C2 = C2_TX_ACTIVE;
  228. }
  229. void serial5_write(const void *buf, unsigned int count)
  230. {
  231. const uint8_t *p = (const uint8_t *)buf;
  232. while (count-- > 0) serial5_putchar(*p++);
  233. }
  234. void serial5_flush(void)
  235. {
  236. while (transmitting) yield(); // wait
  237. }
  238. int serial5_write_buffer_free(void)
  239. {
  240. uint32_t head, tail;
  241. head = tx_buffer_head;
  242. tail = tx_buffer_tail;
  243. if (head >= tail) return SERIAL5_TX_BUFFER_SIZE - 1 - head + tail;
  244. return tail - head - 1;
  245. }
  246. int serial5_available(void)
  247. {
  248. uint32_t head, tail;
  249. head = rx_buffer_head;
  250. tail = rx_buffer_tail;
  251. if (head >= tail) return head - tail;
  252. return SERIAL5_RX_BUFFER_SIZE + head - tail;
  253. }
  254. int serial5_getchar(void)
  255. {
  256. uint32_t head, tail;
  257. int c;
  258. head = rx_buffer_head;
  259. tail = rx_buffer_tail;
  260. if (head == tail) return -1;
  261. if (++tail >= SERIAL5_RX_BUFFER_SIZE) tail = 0;
  262. c = rx_buffer[tail];
  263. rx_buffer_tail = tail;
  264. if (rts_pin) {
  265. int avail;
  266. if (head >= tail) avail = head - tail;
  267. else avail = SERIAL5_RX_BUFFER_SIZE + head - tail;
  268. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  269. }
  270. return c;
  271. }
  272. int serial5_peek(void)
  273. {
  274. uint32_t head, tail;
  275. head = rx_buffer_head;
  276. tail = rx_buffer_tail;
  277. if (head == tail) return -1;
  278. if (++tail >= SERIAL5_RX_BUFFER_SIZE) tail = 0;
  279. return rx_buffer[tail];
  280. }
  281. void serial5_clear(void)
  282. {
  283. rx_buffer_head = rx_buffer_tail;
  284. if (rts_pin) rts_assert();
  285. }
  286. // status interrupt combines
  287. // Transmit data below watermark UART_S1_TDRE
  288. // Transmit complete UART_S1_TC
  289. // Idle line UART_S1_IDLE
  290. // Receive data above watermark UART_S1_RDRF
  291. // LIN break detect UART_S2_LBKDIF
  292. // RxD pin active edge UART_S2_RXEDGIF
  293. void uart4_status_isr(void)
  294. {
  295. uint32_t head, tail, n;
  296. uint8_t c;
  297. if (UART4_S1 & UART_S1_RDRF) {
  298. if (use9Bits && (UART4_C3 & 0x80)) {
  299. n = UART4_D | 0x100;
  300. } else {
  301. n = UART4_D;
  302. }
  303. head = rx_buffer_head + 1;
  304. if (head >= SERIAL5_RX_BUFFER_SIZE) head = 0;
  305. if (head != rx_buffer_tail) {
  306. rx_buffer[head] = n;
  307. rx_buffer_head = head;
  308. }
  309. if (rts_pin) {
  310. int avail;
  311. tail = tx_buffer_tail;
  312. if (head >= tail) avail = head - tail;
  313. else avail = SERIAL5_RX_BUFFER_SIZE + head - tail;
  314. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  315. }
  316. }
  317. c = UART4_C2;
  318. if ((c & UART_C2_TIE) && (UART4_S1 & UART_S1_TDRE)) {
  319. head = tx_buffer_head;
  320. tail = tx_buffer_tail;
  321. if (head == tail) {
  322. UART4_C2 = C2_TX_COMPLETING;
  323. } else {
  324. if (++tail >= SERIAL5_TX_BUFFER_SIZE) tail = 0;
  325. n = tx_buffer[tail];
  326. if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
  327. UART4_D = n;
  328. tx_buffer_tail = tail;
  329. }
  330. }
  331. if ((c & UART_C2_TCIE) && (UART4_S1 & UART_S1_TC)) {
  332. transmitting = 0;
  333. if (transmit_pin) transmit_deassert();
  334. UART4_C2 = C2_TX_INACTIVE;
  335. }
  336. }
  337. #endif // HAS_KINETISK_UART4