Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

526 line
14KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  86. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  87. #ifdef HAS_KINETISK_UART0_FIFO
  88. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  89. #else
  90. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  91. #endif
  92. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  93. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  94. #define C2_TX_INACTIVE C2_ENABLE
  95. void serial_begin(uint32_t divisor)
  96. {
  97. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  98. rx_buffer_head = 0;
  99. rx_buffer_tail = 0;
  100. tx_buffer_head = 0;
  101. tx_buffer_tail = 0;
  102. transmitting = 0;
  103. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  104. CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  105. #if defined(HAS_KINETISK_UART0)
  106. UART0_BDH = (divisor >> 13) & 0x1F;
  107. UART0_BDL = (divisor >> 5) & 0xFF;
  108. UART0_C4 = divisor & 0x1F;
  109. #ifdef HAS_KINETISK_UART0_FIFO
  110. UART0_C1 = UART_C1_ILT;
  111. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  112. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  113. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  114. #else
  115. UART0_C1 = 0;
  116. UART0_PFIFO = 0;
  117. #endif
  118. #elif defined(HAS_KINETISL_UART0)
  119. UART0_BDH = (divisor >> 8) & 0x1F;
  120. UART0_BDL = divisor & 0xFF;
  121. UART0_C1 = 0;
  122. #endif
  123. UART0_C2 = C2_TX_INACTIVE;
  124. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  125. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  126. }
  127. void serial_format(uint32_t format)
  128. {
  129. uint8_t c;
  130. c = UART0_C1;
  131. c = (c & ~0x13) | (format & 0x03); // configure parity
  132. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  133. UART0_C1 = c;
  134. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  135. c = UART0_S2 & ~0x10;
  136. if (format & 0x10) c |= 0x10; // rx invert
  137. UART0_S2 = c;
  138. c = UART0_C3 & ~0x10;
  139. if (format & 0x20) c |= 0x10; // tx invert
  140. UART0_C3 = c;
  141. #ifdef SERIAL_9BIT_SUPPORT
  142. c = UART0_C4 & 0x1F;
  143. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  144. UART0_C4 = c;
  145. use9Bits = format & 0x80;
  146. #endif
  147. }
  148. void serial_end(void)
  149. {
  150. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  151. while (transmitting) yield(); // wait for buffered data to send
  152. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  153. UART0_C2 = 0;
  154. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  155. CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  156. rx_buffer_head = 0;
  157. rx_buffer_tail = 0;
  158. if (rts_pin) rts_deassert();
  159. }
  160. void serial_set_transmit_pin(uint8_t pin)
  161. {
  162. while (transmitting) ;
  163. pinMode(pin, OUTPUT);
  164. digitalWrite(pin, LOW);
  165. transmit_pin = portOutputRegister(pin);
  166. #if defined(KINETISL)
  167. transmit_mask = digitalPinToBitMask(pin);
  168. #endif
  169. }
  170. int serial_set_rts(uint8_t pin)
  171. {
  172. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  173. if (pin < CORE_NUM_DIGITAL) {
  174. rts_pin = portOutputRegister(pin);
  175. #if defined(KINETISL)
  176. rts_mask = digitalPinToBitMask(pin);
  177. #endif
  178. pinMode(pin, OUTPUT);
  179. rts_assert();
  180. } else {
  181. rts_pin = NULL;
  182. return 0;
  183. }
  184. /*
  185. if (pin == 6) {
  186. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  187. } else if (pin == 19) {
  188. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  189. } else {
  190. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  191. return 0;
  192. }
  193. UART0_MODEM |= UART_MODEM_RXRTSE;
  194. */
  195. return 1;
  196. }
  197. int serial_set_cts(uint8_t pin)
  198. {
  199. #if defined(KINETISK)
  200. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  201. if (pin == 18) {
  202. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  203. } else if (pin == 20) {
  204. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  205. } else {
  206. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  207. return 0;
  208. }
  209. UART0_MODEM |= UART_MODEM_TXCTSE;
  210. return 1;
  211. #else
  212. return 0;
  213. #endif
  214. }
  215. void serial_putchar(uint32_t c)
  216. {
  217. uint32_t head, n;
  218. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  219. if (transmit_pin) transmit_assert();
  220. head = tx_buffer_head;
  221. if (++head >= TX_BUFFER_SIZE) head = 0;
  222. while (tx_buffer_tail == head) {
  223. int priority = nvic_execution_priority();
  224. if (priority <= IRQ_PRIORITY) {
  225. if ((UART0_S1 & UART_S1_TDRE)) {
  226. uint32_t tail = tx_buffer_tail;
  227. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  228. n = tx_buffer[tail];
  229. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  230. UART0_D = n;
  231. tx_buffer_tail = tail;
  232. }
  233. } else if (priority >= 256) {
  234. yield();
  235. }
  236. }
  237. tx_buffer[head] = c;
  238. transmitting = 1;
  239. tx_buffer_head = head;
  240. UART0_C2 = C2_TX_ACTIVE;
  241. }
  242. #ifdef HAS_KINETISK_UART0_FIFO
  243. void serial_write(const void *buf, unsigned int count)
  244. {
  245. const uint8_t *p = (const uint8_t *)buf;
  246. const uint8_t *end = p + count;
  247. uint32_t head, n;
  248. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  249. if (transmit_pin) transmit_assert();
  250. while (p < end) {
  251. head = tx_buffer_head;
  252. if (++head >= TX_BUFFER_SIZE) head = 0;
  253. if (tx_buffer_tail == head) {
  254. UART0_C2 = C2_TX_ACTIVE;
  255. do {
  256. int priority = nvic_execution_priority();
  257. if (priority <= IRQ_PRIORITY) {
  258. if ((UART0_S1 & UART_S1_TDRE)) {
  259. uint32_t tail = tx_buffer_tail;
  260. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  261. n = tx_buffer[tail];
  262. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  263. UART0_D = n;
  264. tx_buffer_tail = tail;
  265. }
  266. } else if (priority >= 256) {
  267. yield();
  268. }
  269. } while (tx_buffer_tail == head);
  270. }
  271. tx_buffer[head] = *p++;
  272. transmitting = 1;
  273. tx_buffer_head = head;
  274. }
  275. UART0_C2 = C2_TX_ACTIVE;
  276. }
  277. #else
  278. void serial_write(const void *buf, unsigned int count)
  279. {
  280. const uint8_t *p = (const uint8_t *)buf;
  281. while (count-- > 0) serial_putchar(*p++);
  282. }
  283. #endif
  284. void serial_flush(void)
  285. {
  286. while (transmitting) yield(); // wait
  287. }
  288. int serial_write_buffer_free(void)
  289. {
  290. uint32_t head, tail;
  291. head = tx_buffer_head;
  292. tail = tx_buffer_tail;
  293. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  294. return tail - head - 1;
  295. }
  296. int serial_available(void)
  297. {
  298. uint32_t head, tail;
  299. head = rx_buffer_head;
  300. tail = rx_buffer_tail;
  301. if (head >= tail) return head - tail;
  302. return RX_BUFFER_SIZE + head - tail;
  303. }
  304. int serial_getchar(void)
  305. {
  306. uint32_t head, tail;
  307. int c;
  308. head = rx_buffer_head;
  309. tail = rx_buffer_tail;
  310. if (head == tail) return -1;
  311. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  312. c = rx_buffer[tail];
  313. rx_buffer_tail = tail;
  314. if (rts_pin) {
  315. int avail;
  316. if (head >= tail) avail = head - tail;
  317. else avail = RX_BUFFER_SIZE + head - tail;
  318. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  319. }
  320. return c;
  321. }
  322. int serial_peek(void)
  323. {
  324. uint32_t head, tail;
  325. head = rx_buffer_head;
  326. tail = rx_buffer_tail;
  327. if (head == tail) return -1;
  328. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  329. return rx_buffer[tail];
  330. }
  331. void serial_clear(void)
  332. {
  333. #ifdef HAS_KINETISK_UART0_FIFO
  334. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  335. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  336. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  337. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  338. #endif
  339. rx_buffer_head = rx_buffer_tail;
  340. if (rts_pin) rts_assert();
  341. }
  342. // status interrupt combines
  343. // Transmit data below watermark UART_S1_TDRE
  344. // Transmit complete UART_S1_TC
  345. // Idle line UART_S1_IDLE
  346. // Receive data above watermark UART_S1_RDRF
  347. // LIN break detect UART_S2_LBKDIF
  348. // RxD pin active edge UART_S2_RXEDGIF
  349. void uart0_status_isr(void)
  350. {
  351. uint32_t head, tail, n;
  352. uint8_t c;
  353. #ifdef HAS_KINETISK_UART0_FIFO
  354. uint32_t newhead;
  355. uint8_t avail;
  356. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  357. __disable_irq();
  358. avail = UART0_RCFIFO;
  359. if (avail == 0) {
  360. // The only way to clear the IDLE interrupt flag is
  361. // to read the data register. But reading with no
  362. // data causes a FIFO underrun, which causes the
  363. // FIFO to return corrupted data. If anyone from
  364. // Freescale reads this, what a poor design! There
  365. // write should be a write-1-to-clear for IDLE.
  366. c = UART0_D;
  367. // flushing the fifo recovers from the underrun,
  368. // but there's a possible race condition where a
  369. // new character could be received between reading
  370. // RCFIFO == 0 and flushing the FIFO. To minimize
  371. // the chance, interrupts are disabled so a higher
  372. // priority interrupt (hopefully) doesn't delay.
  373. // TODO: change this to disabling the IDLE interrupt
  374. // which won't be simple, since we already manage
  375. // which transmit interrupts are enabled.
  376. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  377. __enable_irq();
  378. } else {
  379. __enable_irq();
  380. head = rx_buffer_head;
  381. tail = rx_buffer_tail;
  382. do {
  383. if (use9Bits && (UART0_C3 & 0x80)) {
  384. n = UART0_D | 0x100;
  385. } else {
  386. n = UART0_D;
  387. }
  388. newhead = head + 1;
  389. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  390. if (newhead != tail) {
  391. head = newhead;
  392. rx_buffer[head] = n;
  393. }
  394. } while (--avail > 0);
  395. rx_buffer_head = head;
  396. if (rts_pin) {
  397. int avail;
  398. if (head >= tail) avail = head - tail;
  399. else avail = RX_BUFFER_SIZE + head - tail;
  400. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  401. }
  402. }
  403. }
  404. c = UART0_C2;
  405. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  406. head = tx_buffer_head;
  407. tail = tx_buffer_tail;
  408. do {
  409. if (tail == head) break;
  410. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  411. avail = UART0_S1;
  412. n = tx_buffer[tail];
  413. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  414. UART0_D = n;
  415. } while (UART0_TCFIFO < 8);
  416. tx_buffer_tail = tail;
  417. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  418. }
  419. #else
  420. if (UART0_S1 & UART_S1_RDRF) {
  421. n = UART0_D;
  422. if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
  423. head = rx_buffer_head + 1;
  424. if (head >= RX_BUFFER_SIZE) head = 0;
  425. if (head != rx_buffer_tail) {
  426. rx_buffer[head] = n;
  427. rx_buffer_head = head;
  428. }
  429. }
  430. c = UART0_C2;
  431. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  432. head = tx_buffer_head;
  433. tail = tx_buffer_tail;
  434. if (head == tail) {
  435. UART0_C2 = C2_TX_COMPLETING;
  436. } else {
  437. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  438. n = tx_buffer[tail];
  439. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  440. UART0_D = n;
  441. tx_buffer_tail = tail;
  442. }
  443. }
  444. #endif
  445. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  446. transmitting = 0;
  447. if (transmit_pin) transmit_deassert();
  448. UART0_C2 = C2_TX_INACTIVE;
  449. }
  450. }
  451. void serial_print(const char *p)
  452. {
  453. while (*p) {
  454. char c = *p++;
  455. if (c == '\n') serial_putchar('\r');
  456. serial_putchar(c);
  457. }
  458. }
  459. static void serial_phex1(uint32_t n)
  460. {
  461. n &= 15;
  462. if (n < 10) {
  463. serial_putchar('0' + n);
  464. } else {
  465. serial_putchar('A' - 10 + n);
  466. }
  467. }
  468. void serial_phex(uint32_t n)
  469. {
  470. serial_phex1(n >> 4);
  471. serial_phex1(n);
  472. }
  473. void serial_phex16(uint32_t n)
  474. {
  475. serial_phex(n >> 8);
  476. serial_phex(n);
  477. }
  478. void serial_phex32(uint32_t n)
  479. {
  480. serial_phex(n >> 24);
  481. serial_phex(n >> 16);
  482. serial_phex(n >> 8);
  483. serial_phex(n);
  484. }