Teensy 4.1 core updated for C++20

663 lines
19KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL1_TX_BUFFER_SIZE
  37. #define SERIAL1_TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL1_RX_BUFFER_SIZE
  40. #define SERIAL1_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL1_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL1_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL1_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL1_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL1_TX_BUFFER_SIZE > 65535
  76. static volatile uint32_t tx_buffer_head = 0;
  77. static volatile uint32_t tx_buffer_tail = 0;
  78. #elif SERIAL1_TX_BUFFER_SIZE > 255
  79. static volatile uint16_t tx_buffer_head = 0;
  80. static volatile uint16_t tx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t tx_buffer_head = 0;
  83. static volatile uint8_t tx_buffer_tail = 0;
  84. #endif
  85. #if SERIAL1_RX_BUFFER_SIZE > 65535
  86. static volatile uint32_t rx_buffer_head = 0;
  87. static volatile uint32_t rx_buffer_tail = 0;
  88. #elif SERIAL1_RX_BUFFER_SIZE > 255
  89. static volatile uint16_t rx_buffer_head = 0;
  90. static volatile uint16_t rx_buffer_tail = 0;
  91. #else
  92. static volatile uint8_t rx_buffer_head = 0;
  93. static volatile uint8_t rx_buffer_tail = 0;
  94. #endif
  95. static uint8_t rx_pin_num = 0;
  96. static uint8_t tx_pin_num = 1;
  97. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  98. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  99. #ifdef HAS_KINETISK_UART0_FIFO
  100. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  101. #else
  102. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  103. #endif
  104. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  105. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  106. #define C2_TX_INACTIVE C2_ENABLE
  107. void serial_begin(uint32_t divisor)
  108. {
  109. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  110. rx_buffer_head = 0;
  111. rx_buffer_tail = 0;
  112. tx_buffer_head = 0;
  113. tx_buffer_tail = 0;
  114. transmitting = 0;
  115. switch (rx_pin_num) {
  116. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  117. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  118. #if defined(KINETISL)
  119. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  120. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  121. #endif
  122. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  123. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  124. #endif
  125. }
  126. switch (tx_pin_num) {
  127. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  128. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  129. #if defined(KINETISL)
  130. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  131. case 24: CORE_PIN24_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(4); break;
  132. #endif
  133. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  134. case 26: CORE_PIN26_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  135. #endif
  136. }
  137. #if defined(HAS_KINETISK_UART0)
  138. if (divisor < 32) divisor = 32;
  139. UART0_BDH = (divisor >> 13) & 0x1F;
  140. UART0_BDL = (divisor >> 5) & 0xFF;
  141. UART0_C4 = divisor & 0x1F;
  142. #ifdef HAS_KINETISK_UART0_FIFO
  143. UART0_C1 = UART_C1_ILT;
  144. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  145. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  146. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  147. #else
  148. UART0_C1 = 0;
  149. UART0_PFIFO = 0;
  150. #endif
  151. #elif defined(HAS_KINETISL_UART0)
  152. if (divisor < 1) divisor = 1;
  153. UART0_BDH = (divisor >> 8) & 0x1F;
  154. UART0_BDL = divisor & 0xFF;
  155. UART0_C1 = 0;
  156. #endif
  157. UART0_C2 = C2_TX_INACTIVE;
  158. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  159. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  160. }
  161. void serial_format(uint32_t format)
  162. {
  163. uint8_t c;
  164. c = UART0_C1;
  165. c = (c & ~0x13) | (format & 0x03); // configure parity
  166. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  167. UART0_C1 = c;
  168. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  169. c = UART0_S2 & ~0x10;
  170. if (format & 0x10) c |= 0x10; // rx invert
  171. UART0_S2 = c;
  172. c = UART0_C3 & ~0x10;
  173. if (format & 0x20) c |= 0x10; // tx invert
  174. UART0_C3 = c;
  175. #ifdef SERIAL_9BIT_SUPPORT
  176. c = UART0_C4 & 0x1F;
  177. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  178. UART0_C4 = c;
  179. use9Bits = format & 0x80;
  180. #endif
  181. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  182. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  183. if ( format & 0x100) {
  184. uint8_t bdl = UART0_BDL;
  185. UART0_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  186. UART0_BDL = bdl; // Says BDH not acted on until BDL is written
  187. }
  188. #endif
  189. }
  190. void serial_end(void)
  191. {
  192. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  193. while (transmitting) yield(); // wait for buffered data to send
  194. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  195. UART0_C2 = 0;
  196. switch (rx_pin_num) {
  197. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  198. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  199. #if defined(KINETISL)
  200. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  201. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  202. #endif
  203. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  204. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  205. #endif
  206. }
  207. switch (tx_pin_num & 127) {
  208. case 1: CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  209. case 5: CORE_PIN5_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  210. #if defined(KINETISL)
  211. case 4: CORE_PIN4_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  212. case 24: CORE_PIN24_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  213. #endif
  214. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  215. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  216. #endif
  217. }
  218. UART0_S1;
  219. UART0_D; // clear leftover error status
  220. rx_buffer_head = 0;
  221. rx_buffer_tail = 0;
  222. if (rts_pin) rts_deassert();
  223. }
  224. void serial_set_transmit_pin(uint8_t pin)
  225. {
  226. while (transmitting) ;
  227. pinMode(pin, OUTPUT);
  228. digitalWrite(pin, LOW);
  229. transmit_pin = portOutputRegister(pin);
  230. #if defined(KINETISL)
  231. transmit_mask = digitalPinToBitMask(pin);
  232. #endif
  233. }
  234. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  235. {
  236. uint32_t cfg;
  237. if (opendrain) pin |= 128;
  238. if (pin == tx_pin_num) return;
  239. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  240. switch (tx_pin_num & 127) {
  241. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  242. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  243. #if defined(KINETISL)
  244. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  245. case 24: CORE_PIN24_CONFIG = 0; break; // PTE20
  246. #endif
  247. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  248. case 26: CORE_PIN26_CONFIG = 0; break; //PTA14
  249. #endif
  250. }
  251. if (opendrain) {
  252. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  253. } else {
  254. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  255. }
  256. switch (pin & 127) {
  257. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  258. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  259. #if defined(KINETISL)
  260. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  261. case 24: CORE_PIN24_CONFIG = cfg | PORT_PCR_MUX(4); break;
  262. #endif
  263. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  264. case 26: CORE_PIN26_CONFIG = cfg | PORT_PCR_MUX(3); break;
  265. #endif
  266. }
  267. }
  268. tx_pin_num = pin;
  269. }
  270. void serial_set_rx(uint8_t pin)
  271. {
  272. if (pin == rx_pin_num) return;
  273. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  274. switch (rx_pin_num) {
  275. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  276. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  277. #if defined(KINETISL)
  278. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  279. case 25: CORE_PIN25_CONFIG = 0; break; // PTE21
  280. #endif
  281. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  282. case 27: CORE_PIN27_CONFIG = 0; break; // PTA15
  283. #endif
  284. }
  285. switch (pin) {
  286. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  287. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  288. #if defined(KINETISL)
  289. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  290. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  291. #endif
  292. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  293. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  294. #endif
  295. }
  296. }
  297. rx_pin_num = pin;
  298. }
  299. int serial_set_rts(uint8_t pin)
  300. {
  301. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  302. if (pin < CORE_NUM_DIGITAL) {
  303. rts_pin = portOutputRegister(pin);
  304. #if defined(KINETISL)
  305. rts_mask = digitalPinToBitMask(pin);
  306. #endif
  307. pinMode(pin, OUTPUT);
  308. rts_assert();
  309. } else {
  310. rts_pin = NULL;
  311. return 0;
  312. }
  313. /*
  314. if (pin == 6) {
  315. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  316. } else if (pin == 19) {
  317. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  318. } else {
  319. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  320. return 0;
  321. }
  322. UART0_MODEM |= UART_MODEM_RXRTSE;
  323. */
  324. return 1;
  325. }
  326. int serial_set_cts(uint8_t pin)
  327. {
  328. #if defined(KINETISK)
  329. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  330. if (pin == 18) {
  331. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  332. } else if (pin == 20) {
  333. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  334. } else {
  335. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  336. return 0;
  337. }
  338. UART0_MODEM |= UART_MODEM_TXCTSE;
  339. return 1;
  340. #else
  341. return 0;
  342. #endif
  343. }
  344. void serial_putchar(uint32_t c)
  345. {
  346. uint32_t head, n;
  347. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  348. if (transmit_pin) transmit_assert();
  349. head = tx_buffer_head;
  350. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  351. while (tx_buffer_tail == head) {
  352. int priority = nvic_execution_priority();
  353. if (priority <= IRQ_PRIORITY) {
  354. if ((UART0_S1 & UART_S1_TDRE)) {
  355. uint32_t tail = tx_buffer_tail;
  356. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  357. n = tx_buffer[tail];
  358. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  359. UART0_D = n;
  360. tx_buffer_tail = tail;
  361. }
  362. } else if (priority >= 256) {
  363. yield();
  364. }
  365. }
  366. tx_buffer[head] = c;
  367. transmitting = 1;
  368. tx_buffer_head = head;
  369. UART0_C2 = C2_TX_ACTIVE;
  370. }
  371. #ifdef HAS_KINETISK_UART0_FIFO
  372. void serial_write(const void *buf, unsigned int count)
  373. {
  374. const uint8_t *p = (const uint8_t *)buf;
  375. const uint8_t *end = p + count;
  376. uint32_t head, n;
  377. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  378. if (transmit_pin) transmit_assert();
  379. while (p < end) {
  380. head = tx_buffer_head;
  381. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  382. if (tx_buffer_tail == head) {
  383. UART0_C2 = C2_TX_ACTIVE;
  384. do {
  385. int priority = nvic_execution_priority();
  386. if (priority <= IRQ_PRIORITY) {
  387. if ((UART0_S1 & UART_S1_TDRE)) {
  388. uint32_t tail = tx_buffer_tail;
  389. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  390. n = tx_buffer[tail];
  391. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  392. UART0_D = n;
  393. tx_buffer_tail = tail;
  394. }
  395. } else if (priority >= 256) {
  396. yield();
  397. }
  398. } while (tx_buffer_tail == head);
  399. }
  400. tx_buffer[head] = *p++;
  401. transmitting = 1;
  402. tx_buffer_head = head;
  403. }
  404. UART0_C2 = C2_TX_ACTIVE;
  405. }
  406. #else
  407. void serial_write(const void *buf, unsigned int count)
  408. {
  409. const uint8_t *p = (const uint8_t *)buf;
  410. while (count-- > 0) serial_putchar(*p++);
  411. }
  412. #endif
  413. void serial_flush(void)
  414. {
  415. while (transmitting) yield(); // wait
  416. }
  417. int serial_write_buffer_free(void)
  418. {
  419. uint32_t head, tail;
  420. head = tx_buffer_head;
  421. tail = tx_buffer_tail;
  422. if (head >= tail) return SERIAL1_TX_BUFFER_SIZE - 1 - head + tail;
  423. return tail - head - 1;
  424. }
  425. int serial_available(void)
  426. {
  427. uint32_t head, tail;
  428. head = rx_buffer_head;
  429. tail = rx_buffer_tail;
  430. if (head >= tail) return head - tail;
  431. return SERIAL1_RX_BUFFER_SIZE + head - tail;
  432. }
  433. int serial_getchar(void)
  434. {
  435. uint32_t head, tail;
  436. int c;
  437. head = rx_buffer_head;
  438. tail = rx_buffer_tail;
  439. if (head == tail) return -1;
  440. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  441. c = rx_buffer[tail];
  442. rx_buffer_tail = tail;
  443. if (rts_pin) {
  444. int avail;
  445. if (head >= tail) avail = head - tail;
  446. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  447. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  448. }
  449. return c;
  450. }
  451. int serial_peek(void)
  452. {
  453. uint32_t head, tail;
  454. head = rx_buffer_head;
  455. tail = rx_buffer_tail;
  456. if (head == tail) return -1;
  457. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  458. return rx_buffer[tail];
  459. }
  460. void serial_clear(void)
  461. {
  462. #ifdef HAS_KINETISK_UART0_FIFO
  463. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  464. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  465. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  466. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  467. #endif
  468. rx_buffer_head = rx_buffer_tail;
  469. if (rts_pin) rts_assert();
  470. }
  471. // status interrupt combines
  472. // Transmit data below watermark UART_S1_TDRE
  473. // Transmit complete UART_S1_TC
  474. // Idle line UART_S1_IDLE
  475. // Receive data above watermark UART_S1_RDRF
  476. // LIN break detect UART_S2_LBKDIF
  477. // RxD pin active edge UART_S2_RXEDGIF
  478. void uart0_status_isr(void)
  479. {
  480. uint32_t head, tail, n;
  481. uint8_t c;
  482. #ifdef HAS_KINETISK_UART0_FIFO
  483. uint32_t newhead;
  484. uint8_t avail;
  485. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  486. __disable_irq();
  487. avail = UART0_RCFIFO;
  488. if (avail == 0) {
  489. // The only way to clear the IDLE interrupt flag is
  490. // to read the data register. But reading with no
  491. // data causes a FIFO underrun, which causes the
  492. // FIFO to return corrupted data. If anyone from
  493. // Freescale reads this, what a poor design! There
  494. // write should be a write-1-to-clear for IDLE.
  495. c = UART0_D;
  496. // flushing the fifo recovers from the underrun,
  497. // but there's a possible race condition where a
  498. // new character could be received between reading
  499. // RCFIFO == 0 and flushing the FIFO. To minimize
  500. // the chance, interrupts are disabled so a higher
  501. // priority interrupt (hopefully) doesn't delay.
  502. // TODO: change this to disabling the IDLE interrupt
  503. // which won't be simple, since we already manage
  504. // which transmit interrupts are enabled.
  505. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  506. __enable_irq();
  507. } else {
  508. __enable_irq();
  509. head = rx_buffer_head;
  510. tail = rx_buffer_tail;
  511. do {
  512. if (use9Bits && (UART0_C3 & 0x80)) {
  513. n = UART0_D | 0x100;
  514. } else {
  515. n = UART0_D;
  516. }
  517. newhead = head + 1;
  518. if (newhead >= SERIAL1_RX_BUFFER_SIZE) newhead = 0;
  519. if (newhead != tail) {
  520. head = newhead;
  521. rx_buffer[head] = n;
  522. }
  523. } while (--avail > 0);
  524. rx_buffer_head = head;
  525. if (rts_pin) {
  526. int avail;
  527. if (head >= tail) avail = head - tail;
  528. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  529. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  530. }
  531. }
  532. }
  533. c = UART0_C2;
  534. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  535. head = tx_buffer_head;
  536. tail = tx_buffer_tail;
  537. do {
  538. if (tail == head) break;
  539. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  540. avail = UART0_S1;
  541. n = tx_buffer[tail];
  542. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  543. UART0_D = n;
  544. } while (UART0_TCFIFO < 8);
  545. tx_buffer_tail = tail;
  546. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  547. }
  548. #else
  549. if (UART0_S1 & UART_S1_RDRF) {
  550. if (use9Bits && (UART0_C3 & 0x80)) {
  551. n = UART0_D | 0x100;
  552. } else {
  553. n = UART0_D;
  554. }
  555. head = rx_buffer_head + 1;
  556. if (head >= SERIAL1_RX_BUFFER_SIZE) head = 0;
  557. if (head != rx_buffer_tail) {
  558. rx_buffer[head] = n;
  559. rx_buffer_head = head;
  560. }
  561. }
  562. c = UART0_C2;
  563. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  564. head = tx_buffer_head;
  565. tail = tx_buffer_tail;
  566. if (head == tail) {
  567. UART0_C2 = C2_TX_COMPLETING;
  568. } else {
  569. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  570. n = tx_buffer[tail];
  571. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  572. UART0_D = n;
  573. tx_buffer_tail = tail;
  574. }
  575. }
  576. #endif
  577. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  578. transmitting = 0;
  579. if (transmit_pin) transmit_deassert();
  580. UART0_C2 = C2_TX_INACTIVE;
  581. }
  582. }
  583. void serial_print(const char *p)
  584. {
  585. while (*p) {
  586. char c = *p++;
  587. if (c == '\n') serial_putchar('\r');
  588. serial_putchar(c);
  589. }
  590. }
  591. static void serial_phex1(uint32_t n)
  592. {
  593. n &= 15;
  594. if (n < 10) {
  595. serial_putchar('0' + n);
  596. } else {
  597. serial_putchar('A' - 10 + n);
  598. }
  599. }
  600. void serial_phex(uint32_t n)
  601. {
  602. serial_phex1(n >> 4);
  603. serial_phex1(n);
  604. }
  605. void serial_phex16(uint32_t n)
  606. {
  607. serial_phex(n >> 8);
  608. serial_phex(n);
  609. }
  610. void serial_phex32(uint32_t n)
  611. {
  612. serial_phex(n >> 24);
  613. serial_phex(n >> 16);
  614. serial_phex(n >> 8);
  615. serial_phex(n);
  616. }