Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #include <stddef.h>
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #ifndef SERIAL1_TX_BUFFER_SIZE
  38. #define SERIAL1_TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  39. #endif
  40. #ifndef SERIAL1_RX_BUFFER_SIZE
  41. #define SERIAL1_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  42. #endif
  43. #define RTS_HIGH_WATERMARK (SERIAL1_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  44. #define RTS_LOW_WATERMARK (SERIAL1_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  45. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  46. ////////////////////////////////////////////////////////////////
  47. // changes not recommended below this point....
  48. ////////////////////////////////////////////////////////////////
  49. #ifdef SERIAL_9BIT_SUPPORT
  50. static uint8_t use9Bits = 0;
  51. #define BUFTYPE uint16_t
  52. #else
  53. #define BUFTYPE uint8_t
  54. #define use9Bits 0
  55. #endif
  56. static volatile BUFTYPE tx_buffer[SERIAL1_TX_BUFFER_SIZE];
  57. static volatile BUFTYPE rx_buffer[SERIAL1_RX_BUFFER_SIZE];
  58. static volatile BUFTYPE *rx_buffer_storage_ = NULL;
  59. static volatile BUFTYPE *tx_buffer_storage_ = NULL;
  60. static size_t tx_buffer_total_size_ = SERIAL1_TX_BUFFER_SIZE;
  61. static size_t rx_buffer_total_size_ = SERIAL1_RX_BUFFER_SIZE;
  62. static size_t rts_low_watermark_ = RTS_LOW_WATERMARK;
  63. static size_t rts_high_watermark_ = RTS_HIGH_WATERMARK;
  64. static volatile uint8_t transmitting = 0;
  65. #if defined(KINETISK)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. #define transmit_assert() *transmit_pin = 1
  68. #define transmit_deassert() *transmit_pin = 0
  69. static volatile uint8_t *rts_pin=NULL;
  70. #define rts_assert() *rts_pin = 0
  71. #define rts_deassert() *rts_pin = 1
  72. #elif defined(KINETISL)
  73. static volatile uint8_t *transmit_pin=NULL;
  74. static uint8_t transmit_mask=0;
  75. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  76. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  77. static volatile uint8_t *rts_pin=NULL;
  78. static uint8_t rts_mask=0;
  79. #define rts_assert() *(rts_pin+8) = rts_mask;
  80. #define rts_deassert() *(rts_pin+4) = rts_mask;
  81. #endif
  82. #if SERIAL1_TX_BUFFER_SIZE > 65535
  83. static volatile uint32_t tx_buffer_head = 0;
  84. static volatile uint32_t tx_buffer_tail = 0;
  85. #elif SERIAL1_TX_BUFFER_SIZE > 255
  86. static volatile uint16_t tx_buffer_head = 0;
  87. static volatile uint16_t tx_buffer_tail = 0;
  88. #else
  89. static volatile uint8_t tx_buffer_head = 0;
  90. static volatile uint8_t tx_buffer_tail = 0;
  91. #endif
  92. #if SERIAL1_RX_BUFFER_SIZE > 65535
  93. static volatile uint32_t rx_buffer_head = 0;
  94. static volatile uint32_t rx_buffer_tail = 0;
  95. #elif SERIAL1_RX_BUFFER_SIZE > 255
  96. static volatile uint16_t rx_buffer_head = 0;
  97. static volatile uint16_t rx_buffer_tail = 0;
  98. #else
  99. static volatile uint8_t rx_buffer_head = 0;
  100. static volatile uint8_t rx_buffer_tail = 0;
  101. #endif
  102. static uint8_t rx_pin_num = 0;
  103. static uint8_t tx_pin_num = 1;
  104. #if defined(KINETISL)
  105. static uint8_t half_duplex_mode = 0;
  106. #endif
  107. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  108. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  109. #ifdef HAS_KINETISK_UART0_FIFO
  110. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  111. #else
  112. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  113. #endif
  114. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  115. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  116. #define C2_TX_INACTIVE C2_ENABLE
  117. // BITBAND Support
  118. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  119. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  120. #define C3_TXDIR_BIT 5
  121. void serial_begin(uint32_t divisor)
  122. {
  123. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  124. rx_buffer_head = 0;
  125. rx_buffer_tail = 0;
  126. tx_buffer_head = 0;
  127. tx_buffer_tail = 0;
  128. transmitting = 0;
  129. switch (rx_pin_num) {
  130. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  131. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  132. #if defined(KINETISL)
  133. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  134. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  135. #endif
  136. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  137. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  138. #endif
  139. }
  140. switch (tx_pin_num) {
  141. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  142. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  143. #if defined(KINETISL)
  144. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  145. case 24: CORE_PIN24_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(4); break;
  146. #endif
  147. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  148. case 26: CORE_PIN26_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  149. #endif
  150. }
  151. #if defined(HAS_KINETISK_UART0)
  152. if (divisor < 32) divisor = 32;
  153. UART0_BDH = (divisor >> 13) & 0x1F;
  154. UART0_BDL = (divisor >> 5) & 0xFF;
  155. UART0_C4 = divisor & 0x1F;
  156. #ifdef HAS_KINETISK_UART0_FIFO
  157. UART0_C1 = UART_C1_ILT;
  158. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  159. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  160. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  161. #else
  162. UART0_C1 = 0;
  163. UART0_PFIFO = 0;
  164. #endif
  165. #elif defined(HAS_KINETISL_UART0)
  166. if (divisor < 1) divisor = 1;
  167. UART0_BDH = (divisor >> 8) & 0x1F;
  168. UART0_BDL = divisor & 0xFF;
  169. UART0_C1 = 0;
  170. #endif
  171. UART0_C2 = C2_TX_INACTIVE;
  172. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  173. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  174. }
  175. void serial_format(uint32_t format)
  176. {
  177. uint8_t c;
  178. c = UART0_C1;
  179. c = (c & ~0x13) | (format & 0x03); // configure parity
  180. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  181. UART0_C1 = c;
  182. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  183. c = UART0_S2 & ~0x10;
  184. if (format & 0x10) c |= 0x10; // rx invert
  185. UART0_S2 = c;
  186. c = UART0_C3 & ~0x10;
  187. if (format & 0x20) c |= 0x10; // tx invert
  188. UART0_C3 = c;
  189. #ifdef SERIAL_9BIT_SUPPORT
  190. c = UART0_C4 & 0x1F;
  191. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  192. UART0_C4 = c;
  193. use9Bits = format & 0x80;
  194. #endif
  195. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  196. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  197. if ( format & 0x100) {
  198. uint8_t bdl = UART0_BDL;
  199. UART0_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  200. UART0_BDL = bdl; // Says BDH not acted on until BDL is written
  201. }
  202. #endif
  203. // process request for half duplex.
  204. if ((format & SERIAL_HALF_DUPLEX) != 0) {
  205. c = UART0_C1;
  206. c |= UART_C1_LOOPS | UART_C1_RSRC;
  207. UART0_C1 = c;
  208. // Lets try to make use of bitband address to set the direction for ue...
  209. #if defined(KINETISL)
  210. switch (tx_pin_num) {
  211. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS ; break;
  212. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; break;
  213. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2) | PORT_PCR_PE | PORT_PCR_PS; break;
  214. case 24: CORE_PIN24_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(4) | PORT_PCR_PE | PORT_PCR_PS; break;
  215. }
  216. half_duplex_mode = 1;
  217. #else
  218. volatile uint32_t *reg = portConfigRegister(tx_pin_num);
  219. *reg = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; // pullup on output pin;
  220. transmit_pin = (uint8_t*)GPIO_BITBAND_PTR(UART0_C3, C3_TXDIR_BIT);
  221. #endif
  222. } else {
  223. #if defined(KINETISL)
  224. half_duplex_mode = 0;
  225. #else
  226. if (transmit_pin == (uint8_t*)GPIO_BITBAND_PTR(UART0_C3, C3_TXDIR_BIT)) transmit_pin = NULL;
  227. #endif
  228. }
  229. }
  230. void serial_end(void)
  231. {
  232. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  233. while (transmitting) yield(); // wait for buffered data to send
  234. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  235. UART0_C2 = 0;
  236. switch (rx_pin_num) {
  237. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  238. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  239. #if defined(KINETISL)
  240. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  241. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  242. #endif
  243. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  244. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  245. #endif
  246. }
  247. switch (tx_pin_num & 127) {
  248. case 1: CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  249. case 5: CORE_PIN5_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  250. #if defined(KINETISL)
  251. case 4: CORE_PIN4_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  252. case 24: CORE_PIN24_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  253. #endif
  254. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  255. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  256. #endif
  257. }
  258. UART0_S1;
  259. UART0_D; // clear leftover error status
  260. rx_buffer_head = 0;
  261. rx_buffer_tail = 0;
  262. if (rts_pin) rts_deassert();
  263. }
  264. void serial_set_transmit_pin(uint8_t pin)
  265. {
  266. while (transmitting) ;
  267. pinMode(pin, OUTPUT);
  268. digitalWrite(pin, LOW);
  269. transmit_pin = portOutputRegister(pin);
  270. #if defined(KINETISL)
  271. transmit_mask = digitalPinToBitMask(pin);
  272. #endif
  273. }
  274. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  275. {
  276. uint32_t cfg;
  277. if (opendrain) pin |= 128;
  278. if (pin == tx_pin_num) return;
  279. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  280. switch (tx_pin_num & 127) {
  281. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  282. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  283. #if defined(KINETISL)
  284. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  285. case 24: CORE_PIN24_CONFIG = 0; break; // PTE20
  286. #endif
  287. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  288. case 26: CORE_PIN26_CONFIG = 0; break; //PTA14
  289. #endif
  290. }
  291. if (opendrain) {
  292. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  293. } else {
  294. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  295. }
  296. switch (pin & 127) {
  297. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  298. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  299. #if defined(KINETISL)
  300. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  301. case 24: CORE_PIN24_CONFIG = cfg | PORT_PCR_MUX(4); break;
  302. #endif
  303. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  304. case 26: CORE_PIN26_CONFIG = cfg | PORT_PCR_MUX(3); break;
  305. #endif
  306. }
  307. }
  308. tx_pin_num = pin;
  309. }
  310. void serial_set_rx(uint8_t pin)
  311. {
  312. if (pin == rx_pin_num) return;
  313. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  314. switch (rx_pin_num) {
  315. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  316. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  317. #if defined(KINETISL)
  318. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  319. case 25: CORE_PIN25_CONFIG = 0; break; // PTE21
  320. #endif
  321. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  322. case 27: CORE_PIN27_CONFIG = 0; break; // PTA15
  323. #endif
  324. }
  325. switch (pin) {
  326. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  327. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  328. #if defined(KINETISL)
  329. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  330. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  331. #endif
  332. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  333. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  334. #endif
  335. }
  336. }
  337. rx_pin_num = pin;
  338. }
  339. int serial_set_rts(uint8_t pin)
  340. {
  341. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  342. if (pin < CORE_NUM_DIGITAL) {
  343. rts_pin = portOutputRegister(pin);
  344. #if defined(KINETISL)
  345. rts_mask = digitalPinToBitMask(pin);
  346. #endif
  347. pinMode(pin, OUTPUT);
  348. rts_assert();
  349. } else {
  350. rts_pin = NULL;
  351. return 0;
  352. }
  353. /*
  354. if (pin == 6) {
  355. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  356. } else if (pin == 19) {
  357. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  358. } else {
  359. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  360. return 0;
  361. }
  362. UART0_MODEM |= UART_MODEM_RXRTSE;
  363. */
  364. return 1;
  365. }
  366. int serial_set_cts(uint8_t pin)
  367. {
  368. #if defined(KINETISK)
  369. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  370. if (pin == 18) {
  371. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  372. } else if (pin == 20) {
  373. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  374. } else {
  375. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  376. return 0;
  377. }
  378. UART0_MODEM |= UART_MODEM_TXCTSE;
  379. return 1;
  380. #else
  381. return 0;
  382. #endif
  383. }
  384. void serial_putchar(uint32_t c)
  385. {
  386. uint32_t head, n;
  387. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  388. if (transmit_pin) transmit_assert();
  389. #if defined(KINETISL)
  390. if (half_duplex_mode) {
  391. __disable_irq();
  392. volatile uint32_t reg = UART0_C3;
  393. reg |= UART_C3_TXDIR;
  394. UART0_C3 = reg;
  395. __enable_irq();
  396. }
  397. #endif
  398. head = tx_buffer_head;
  399. if (++head >= tx_buffer_total_size_) head = 0;
  400. while (tx_buffer_tail == head) {
  401. int priority = nvic_execution_priority();
  402. if (priority <= IRQ_PRIORITY) {
  403. if ((UART0_S1 & UART_S1_TDRE)) {
  404. uint32_t tail = tx_buffer_tail;
  405. if (++tail >= tx_buffer_total_size_) tail = 0;
  406. if (tail < SERIAL1_TX_BUFFER_SIZE) {
  407. n = tx_buffer[tail];
  408. } else {
  409. n = tx_buffer_storage_[tail-SERIAL1_TX_BUFFER_SIZE];
  410. }
  411. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  412. UART0_D = n;
  413. tx_buffer_tail = tail;
  414. }
  415. } else if (priority >= 256) {
  416. yield();
  417. }
  418. }
  419. if (head < SERIAL1_TX_BUFFER_SIZE) {
  420. tx_buffer[head] = c;
  421. } else {
  422. tx_buffer_storage_[head - SERIAL1_TX_BUFFER_SIZE] = c;
  423. }
  424. transmitting = 1;
  425. tx_buffer_head = head;
  426. UART0_C2 = C2_TX_ACTIVE;
  427. }
  428. #ifdef HAS_KINETISK_UART0_FIFO
  429. void serial_write(const void *buf, unsigned int count)
  430. {
  431. const uint8_t *p = (const uint8_t *)buf;
  432. const uint8_t *end = p + count;
  433. uint32_t head, n;
  434. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  435. if (transmit_pin) transmit_assert();
  436. while (p < end) {
  437. head = tx_buffer_head;
  438. if (++head >= tx_buffer_total_size_) head = 0;
  439. if (tx_buffer_tail == head) {
  440. UART0_C2 = C2_TX_ACTIVE;
  441. do {
  442. int priority = nvic_execution_priority();
  443. if (priority <= IRQ_PRIORITY) {
  444. if ((UART0_S1 & UART_S1_TDRE)) {
  445. uint32_t tail = tx_buffer_tail;
  446. if (++tail >= tx_buffer_total_size_) tail = 0;
  447. if (tail < SERIAL1_TX_BUFFER_SIZE) {
  448. n = tx_buffer[tail];
  449. } else {
  450. n = tx_buffer_storage_[tail-SERIAL1_TX_BUFFER_SIZE];
  451. }
  452. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  453. UART0_D = n;
  454. tx_buffer_tail = tail;
  455. }
  456. } else if (priority >= 256) {
  457. yield();
  458. }
  459. } while (tx_buffer_tail == head);
  460. }
  461. if (head < SERIAL1_TX_BUFFER_SIZE) {
  462. tx_buffer[head] = *p++;
  463. } else {
  464. tx_buffer_storage_[head - SERIAL1_TX_BUFFER_SIZE] = *p++;
  465. }
  466. transmitting = 1;
  467. tx_buffer_head = head;
  468. }
  469. UART0_C2 = C2_TX_ACTIVE;
  470. }
  471. #else
  472. void serial_write(const void *buf, unsigned int count)
  473. {
  474. const uint8_t *p = (const uint8_t *)buf;
  475. while (count-- > 0) serial_putchar(*p++);
  476. }
  477. #endif
  478. void serial_flush(void)
  479. {
  480. while (transmitting) yield(); // wait
  481. }
  482. int serial_write_buffer_free(void)
  483. {
  484. uint32_t head, tail;
  485. head = tx_buffer_head;
  486. tail = tx_buffer_tail;
  487. if (head >= tail) return tx_buffer_total_size_ - 1 - head + tail;
  488. return tail - head - 1;
  489. }
  490. int serial_available(void)
  491. {
  492. uint32_t head, tail;
  493. head = rx_buffer_head;
  494. tail = rx_buffer_tail;
  495. if (head >= tail) return head - tail;
  496. return rx_buffer_total_size_ + head - tail;
  497. }
  498. int serial_getchar(void)
  499. {
  500. uint32_t head, tail;
  501. int c;
  502. head = rx_buffer_head;
  503. tail = rx_buffer_tail;
  504. if (head == tail) return -1;
  505. if (++tail >= rx_buffer_total_size_) tail = 0;
  506. if (tail < SERIAL1_RX_BUFFER_SIZE) {
  507. c = rx_buffer[tail];
  508. } else {
  509. c = rx_buffer_storage_[tail-SERIAL1_RX_BUFFER_SIZE];
  510. }
  511. rx_buffer_tail = tail;
  512. if (rts_pin) {
  513. int avail;
  514. if (head >= tail) avail = head - tail;
  515. else avail = rx_buffer_total_size_ + head - tail;
  516. if (avail <= rts_low_watermark_) rts_assert();
  517. }
  518. return c;
  519. }
  520. int serial_peek(void)
  521. {
  522. uint32_t head, tail;
  523. head = rx_buffer_head;
  524. tail = rx_buffer_tail;
  525. if (head == tail) return -1;
  526. if (++tail >= rx_buffer_total_size_) tail = 0;
  527. if (tail < SERIAL1_RX_BUFFER_SIZE) {
  528. return rx_buffer[tail];
  529. }
  530. return rx_buffer_storage_[tail-SERIAL1_RX_BUFFER_SIZE];
  531. }
  532. void serial_clear(void)
  533. {
  534. #ifdef HAS_KINETISK_UART0_FIFO
  535. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  536. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  537. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  538. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  539. #endif
  540. rx_buffer_head = rx_buffer_tail;
  541. if (rts_pin) rts_assert();
  542. }
  543. // status interrupt combines
  544. // Transmit data below watermark UART_S1_TDRE
  545. // Transmit complete UART_S1_TC
  546. // Idle line UART_S1_IDLE
  547. // Receive data above watermark UART_S1_RDRF
  548. // LIN break detect UART_S2_LBKDIF
  549. // RxD pin active edge UART_S2_RXEDGIF
  550. void uart0_status_isr(void)
  551. {
  552. uint32_t head, tail, n;
  553. uint8_t c;
  554. #ifdef HAS_KINETISK_UART0_FIFO
  555. uint32_t newhead;
  556. uint8_t avail;
  557. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  558. __disable_irq();
  559. avail = UART0_RCFIFO;
  560. if (avail == 0) {
  561. // The only way to clear the IDLE interrupt flag is
  562. // to read the data register. But reading with no
  563. // data causes a FIFO underrun, which causes the
  564. // FIFO to return corrupted data. If anyone from
  565. // Freescale reads this, what a poor design! There
  566. // write should be a write-1-to-clear for IDLE.
  567. c = UART0_D;
  568. // flushing the fifo recovers from the underrun,
  569. // but there's a possible race condition where a
  570. // new character could be received between reading
  571. // RCFIFO == 0 and flushing the FIFO. To minimize
  572. // the chance, interrupts are disabled so a higher
  573. // priority interrupt (hopefully) doesn't delay.
  574. // TODO: change this to disabling the IDLE interrupt
  575. // which won't be simple, since we already manage
  576. // which transmit interrupts are enabled.
  577. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  578. __enable_irq();
  579. } else {
  580. __enable_irq();
  581. head = rx_buffer_head;
  582. tail = rx_buffer_tail;
  583. do {
  584. if (use9Bits && (UART0_C3 & 0x80)) {
  585. n = UART0_D | 0x100;
  586. } else {
  587. n = UART0_D;
  588. }
  589. newhead = head + 1;
  590. if (newhead >= rx_buffer_total_size_) newhead = 0;
  591. if (newhead != tail) {
  592. head = newhead;
  593. if (newhead < SERIAL1_RX_BUFFER_SIZE) {
  594. rx_buffer[head] = n;
  595. } else {
  596. rx_buffer_storage_[head-SERIAL1_RX_BUFFER_SIZE] = n;
  597. }
  598. }
  599. } while (--avail > 0);
  600. rx_buffer_head = head;
  601. if (rts_pin) {
  602. int avail;
  603. if (head >= tail) avail = head - tail;
  604. else avail = rx_buffer_total_size_ + head - tail;
  605. if (avail >= rts_high_watermark_) rts_deassert();
  606. }
  607. }
  608. }
  609. c = UART0_C2;
  610. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  611. head = tx_buffer_head;
  612. tail = tx_buffer_tail;
  613. do {
  614. if (tail == head) break;
  615. if (++tail >= tx_buffer_total_size_) tail = 0;
  616. avail = UART0_S1;
  617. if (tail < SERIAL1_TX_BUFFER_SIZE) {
  618. n = tx_buffer[tail];
  619. } else {
  620. n = tx_buffer_storage_[tail-SERIAL1_TX_BUFFER_SIZE];
  621. }
  622. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  623. UART0_D = n;
  624. } while (UART0_TCFIFO < 8);
  625. tx_buffer_tail = tail;
  626. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  627. }
  628. #else
  629. if (UART0_S1 & UART_S1_RDRF) {
  630. if (use9Bits && (UART0_C3 & 0x80)) {
  631. n = UART0_D | 0x100;
  632. } else {
  633. n = UART0_D;
  634. }
  635. head = rx_buffer_head + 1;
  636. if (head >= rx_buffer_total_size_) head = 0;
  637. if (head != rx_buffer_tail) {
  638. if (head < SERIAL1_RX_BUFFER_SIZE) {
  639. rx_buffer[head] = n;
  640. } else {
  641. rx_buffer_storage_[head-SERIAL1_RX_BUFFER_SIZE] = n;
  642. }
  643. rx_buffer_head = head;
  644. }
  645. }
  646. c = UART0_C2;
  647. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  648. head = tx_buffer_head;
  649. tail = tx_buffer_tail;
  650. if (head == tail) {
  651. UART0_C2 = C2_TX_COMPLETING;
  652. } else {
  653. if (++tail >= tx_buffer_total_size_) tail = 0;
  654. if (tail < SERIAL1_TX_BUFFER_SIZE) {
  655. n = tx_buffer[tail];
  656. } else {
  657. n = tx_buffer_storage_[tail-SERIAL1_TX_BUFFER_SIZE];
  658. }
  659. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  660. UART0_D = n;
  661. tx_buffer_tail = tail;
  662. }
  663. }
  664. #endif
  665. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  666. transmitting = 0;
  667. if (transmit_pin) transmit_deassert();
  668. #if defined(KINETISL)
  669. if (half_duplex_mode) {
  670. __disable_irq();
  671. volatile uint32_t reg = UART0_C3;
  672. reg &= ~UART_C3_TXDIR;
  673. UART0_C3 = reg;
  674. __enable_irq();
  675. }
  676. #endif
  677. UART0_C2 = C2_TX_INACTIVE;
  678. }
  679. }
  680. void serial_print(const char *p)
  681. {
  682. while (*p) {
  683. char c = *p++;
  684. if (c == '\n') serial_putchar('\r');
  685. serial_putchar(c);
  686. }
  687. }
  688. static void serial_phex1(uint32_t n)
  689. {
  690. n &= 15;
  691. if (n < 10) {
  692. serial_putchar('0' + n);
  693. } else {
  694. serial_putchar('A' - 10 + n);
  695. }
  696. }
  697. void serial_phex(uint32_t n)
  698. {
  699. serial_phex1(n >> 4);
  700. serial_phex1(n);
  701. }
  702. void serial_phex16(uint32_t n)
  703. {
  704. serial_phex(n >> 8);
  705. serial_phex(n);
  706. }
  707. void serial_phex32(uint32_t n)
  708. {
  709. serial_phex(n >> 24);
  710. serial_phex(n >> 16);
  711. serial_phex(n >> 8);
  712. serial_phex(n);
  713. }
  714. void serial_add_memory_for_read(void *buffer, size_t length)
  715. {
  716. rx_buffer_storage_ = (BUFTYPE*)buffer;
  717. if (buffer) {
  718. rx_buffer_total_size_ = SERIAL1_RX_BUFFER_SIZE + length;
  719. } else {
  720. rx_buffer_total_size_ = SERIAL1_RX_BUFFER_SIZE;
  721. }
  722. rts_low_watermark_ = RTS_LOW_WATERMARK + length;
  723. rts_high_watermark_ = RTS_HIGH_WATERMARK + length;
  724. }
  725. void serial_add_memory_for_write(void *buffer, size_t length)
  726. {
  727. tx_buffer_storage_ = (BUFTYPE*)buffer;
  728. if (buffer) {
  729. tx_buffer_total_size_ = SERIAL1_TX_BUFFER_SIZE + length;
  730. } else {
  731. tx_buffer_total_size_ = SERIAL1_TX_BUFFER_SIZE;
  732. }
  733. }