You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 8 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 10 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 8 години
преди 9 години
преди 8 години
преди 9 години
преди 8 години
преди 9 години
преди 8 години
преди 9 години
преди 8 години
преди 9 години
преди 9 години
преди 11 години
преди 8 години
преди 11 години
преди 11 години
преди 10 години
преди 9 години
преди 9 години
преди 9 години
преди 9 години
преди 9 години
преди 10 години
преди 9 години
преди 10 години
преди 8 години
преди 9 години
преди 11 години
преди 9 години
преди 10 години
преди 9 години
преди 10 години
преди 9 години
преди 11 години
преди 9 години
преди 10 години
преди 9 години
преди 10 години
преди 9 години
преди 10 години
преди 9 години
преди 10 години
преди 11 години
преди 8 години
преди 9 години
преди 11 години
преди 8 години
преди 11 години
преди 9 години
преди 8 години
преди 9 години
преди 9 години
преди 11 години
преди 8 години
преди 11 години
преди 9 години
преди 8 години
преди 9 години
преди 11 години
преди 11 години
преди 8 години
преди 11 години
преди 9 години
преди 9 години
преди 9 години
преди 9 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 9 години
преди 8 години
преди 9 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 9 години
преди 9 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 8 години
преди 11 години
преди 10 години
преди 8 години
преди 8 години
преди 10 години
преди 11 години
преди 10 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. {GPIO_BITBAND_PTR(CORE_PIN58_PORTREG, CORE_PIN58_BIT), &CORE_PIN58_CONFIG},
  99. {GPIO_BITBAND_PTR(CORE_PIN59_PORTREG, CORE_PIN59_BIT), &CORE_PIN59_CONFIG},
  100. {GPIO_BITBAND_PTR(CORE_PIN60_PORTREG, CORE_PIN60_BIT), &CORE_PIN60_CONFIG},
  101. {GPIO_BITBAND_PTR(CORE_PIN61_PORTREG, CORE_PIN61_BIT), &CORE_PIN61_CONFIG},
  102. {GPIO_BITBAND_PTR(CORE_PIN62_PORTREG, CORE_PIN62_BIT), &CORE_PIN62_CONFIG},
  103. {GPIO_BITBAND_PTR(CORE_PIN63_PORTREG, CORE_PIN63_BIT), &CORE_PIN63_CONFIG},
  104. #endif
  105. };
  106. #elif defined(KINETISL)
  107. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  108. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  109. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  110. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  129. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  130. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  131. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  132. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  133. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  134. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  135. };
  136. #endif
  137. typedef void (*voidFuncPtr)(void);
  138. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  139. #if defined(KINETISK)
  140. static void porta_interrupt(void);
  141. static void portb_interrupt(void);
  142. static void portc_interrupt(void);
  143. static void portd_interrupt(void);
  144. static void porte_interrupt(void);
  145. #elif defined(KINETISL)
  146. static void porta_interrupt(void);
  147. static void portcd_interrupt(void);
  148. #endif
  149. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  150. {
  151. _VectorsRam[irq + 16] = function;
  152. }
  153. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  154. {
  155. volatile uint32_t *config;
  156. uint32_t cfg, mask;
  157. if (pin >= CORE_NUM_DIGITAL) return;
  158. switch (mode) {
  159. case CHANGE: mask = 0x0B; break;
  160. case RISING: mask = 0x09; break;
  161. case FALLING: mask = 0x0A; break;
  162. case LOW: mask = 0x08; break;
  163. case HIGH: mask = 0x0C; break;
  164. default: return;
  165. }
  166. mask = (mask << 16) | 0x01000000;
  167. config = portConfigRegister(pin);
  168. #if defined(KINETISK)
  169. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  170. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  171. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  172. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  173. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  174. #elif defined(KINETISL)
  175. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  176. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  177. #endif
  178. __disable_irq();
  179. cfg = *config;
  180. cfg &= ~0x000F0000; // disable any previous interrupt
  181. *config = cfg;
  182. intFunc[pin] = function; // set the function pointer
  183. cfg |= mask;
  184. *config = cfg; // enable the new interrupt
  185. __enable_irq();
  186. }
  187. void detachInterrupt(uint8_t pin)
  188. {
  189. volatile uint32_t *config;
  190. config = portConfigRegister(pin);
  191. __disable_irq();
  192. *config = ((*config & ~0x000F0000) | 0x01000000);
  193. intFunc[pin] = NULL;
  194. __enable_irq();
  195. }
  196. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  197. static void porta_interrupt(void)
  198. {
  199. uint32_t isfr = PORTA_ISFR;
  200. PORTA_ISFR = isfr;
  201. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  202. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  203. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  204. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  205. }
  206. static void portb_interrupt(void)
  207. {
  208. uint32_t isfr = PORTB_ISFR;
  209. PORTB_ISFR = isfr;
  210. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  211. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  212. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  213. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  214. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  215. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  216. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  217. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  218. }
  219. static void portc_interrupt(void)
  220. {
  221. // TODO: these are inefficent. Use CLZ somehow....
  222. uint32_t isfr = PORTC_ISFR;
  223. PORTC_ISFR = isfr;
  224. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  225. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  226. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  227. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  228. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  229. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  230. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  231. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  232. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  233. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  234. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  235. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  236. }
  237. static void portd_interrupt(void)
  238. {
  239. uint32_t isfr = PORTD_ISFR;
  240. PORTD_ISFR = isfr;
  241. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  242. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  243. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  244. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  245. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  246. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  247. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  248. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  249. }
  250. static void porte_interrupt(void)
  251. {
  252. uint32_t isfr = PORTE_ISFR;
  253. PORTE_ISFR = isfr;
  254. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  255. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  256. }
  257. #elif defined(__MKL26Z64__)
  258. static void porta_interrupt(void)
  259. {
  260. uint32_t isfr = PORTA_ISFR;
  261. PORTA_ISFR = isfr;
  262. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  263. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  264. }
  265. static void portcd_interrupt(void)
  266. {
  267. uint32_t isfr = PORTC_ISFR;
  268. PORTC_ISFR = isfr;
  269. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  270. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  271. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  272. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  273. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  274. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  275. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  276. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  277. isfr = PORTD_ISFR;
  278. PORTD_ISFR = isfr;
  279. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  280. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  281. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  282. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  283. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  284. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  285. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  286. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  287. }
  288. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  289. static void porta_interrupt(void)
  290. {
  291. uint32_t isfr = PORTA_ISFR;
  292. PORTA_ISFR = isfr;
  293. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  294. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  295. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  296. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  297. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  298. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  299. if ((isfr & CORE_PIN39_BITMASK) && intFunc[39]) intFunc[39]();
  300. if ((isfr & CORE_PIN40_BITMASK) && intFunc[40]) intFunc[40]();
  301. if ((isfr & CORE_PIN41_BITMASK) && intFunc[41]) intFunc[41]();
  302. if ((isfr & CORE_PIN42_BITMASK) && intFunc[42]) intFunc[42]();
  303. }
  304. static void portb_interrupt(void)
  305. {
  306. uint32_t isfr = PORTB_ISFR;
  307. PORTB_ISFR = isfr;
  308. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  309. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  310. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  311. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  312. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  313. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  314. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  315. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  316. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  317. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  318. if ((isfr & CORE_PIN43_BITMASK) && intFunc[43]) intFunc[43]();
  319. if ((isfr & CORE_PIN44_BITMASK) && intFunc[44]) intFunc[44]();
  320. if ((isfr & CORE_PIN45_BITMASK) && intFunc[45]) intFunc[45]();
  321. if ((isfr & CORE_PIN46_BITMASK) && intFunc[46]) intFunc[46]();
  322. if ((isfr & CORE_PIN49_BITMASK) && intFunc[49]) intFunc[49]();
  323. if ((isfr & CORE_PIN50_BITMASK) && intFunc[50]) intFunc[50]();
  324. }
  325. static void portc_interrupt(void)
  326. {
  327. // TODO: these are inefficent. Use CLZ somehow....
  328. uint32_t isfr = PORTC_ISFR;
  329. PORTC_ISFR = isfr;
  330. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  331. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  332. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  333. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  334. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  335. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  336. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  337. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  338. if ((isfr & CORE_PIN35_BITMASK) && intFunc[35]) intFunc[35]();
  339. if ((isfr & CORE_PIN36_BITMASK) && intFunc[36]) intFunc[36]();
  340. if ((isfr & CORE_PIN37_BITMASK) && intFunc[37]) intFunc[37]();
  341. if ((isfr & CORE_PIN38_BITMASK) && intFunc[38]) intFunc[38]();
  342. }
  343. static void portd_interrupt(void)
  344. {
  345. uint32_t isfr = PORTD_ISFR;
  346. PORTD_ISFR = isfr;
  347. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  348. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  349. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  350. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  351. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  352. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  353. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  354. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  355. if ((isfr & CORE_PIN47_BITMASK) && intFunc[47]) intFunc[47]();
  356. if ((isfr & CORE_PIN48_BITMASK) && intFunc[48]) intFunc[48]();
  357. if ((isfr & CORE_PIN51_BITMASK) && intFunc[51]) intFunc[51]();
  358. if ((isfr & CORE_PIN52_BITMASK) && intFunc[52]) intFunc[52]();
  359. if ((isfr & CORE_PIN53_BITMASK) && intFunc[53]) intFunc[53]();
  360. if ((isfr & CORE_PIN54_BITMASK) && intFunc[54]) intFunc[54]();
  361. if ((isfr & CORE_PIN55_BITMASK) && intFunc[55]) intFunc[55]();
  362. }
  363. static void porte_interrupt(void)
  364. {
  365. uint32_t isfr = PORTE_ISFR;
  366. PORTE_ISFR = isfr;
  367. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  368. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  369. if ((isfr & CORE_PIN34_BITMASK) && intFunc[34]) intFunc[34]();
  370. if ((isfr & CORE_PIN56_BITMASK) && intFunc[56]) intFunc[56]();
  371. if ((isfr & CORE_PIN57_BITMASK) && intFunc[57]) intFunc[57]();
  372. if ((isfr & CORE_PIN58_BITMASK) && intFunc[58]) intFunc[58]();
  373. if ((isfr & CORE_PIN59_BITMASK) && intFunc[59]) intFunc[59]();
  374. if ((isfr & CORE_PIN60_BITMASK) && intFunc[60]) intFunc[60]();
  375. if ((isfr & CORE_PIN61_BITMASK) && intFunc[61]) intFunc[61]();
  376. if ((isfr & CORE_PIN62_BITMASK) && intFunc[62]) intFunc[62]();
  377. if ((isfr & CORE_PIN63_BITMASK) && intFunc[63]) intFunc[63]();
  378. }
  379. #endif
  380. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  381. unsigned long rtc_get(void)
  382. {
  383. return RTC_TSR;
  384. }
  385. void rtc_set(unsigned long t)
  386. {
  387. RTC_SR = 0;
  388. RTC_TPR = 0;
  389. RTC_TSR = t;
  390. RTC_SR = RTC_SR_TCE;
  391. }
  392. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  393. // For example, adjust = -100 is slows the clock by 11.92 ppm
  394. //
  395. void rtc_compensate(int adjust)
  396. {
  397. uint32_t comp, interval, tcr;
  398. // This simple approach tries to maximize the interval.
  399. // Perhaps minimizing TCR would be better, so the
  400. // compensation is distributed more evenly across
  401. // many seconds, rather than saving it all up and then
  402. // altering one second up to +/- 0.38%
  403. if (adjust >= 0) {
  404. comp = adjust;
  405. interval = 256;
  406. while (1) {
  407. tcr = comp * interval;
  408. if (tcr < 128*256) break;
  409. if (--interval == 1) break;
  410. }
  411. tcr = tcr >> 8;
  412. } else {
  413. comp = -adjust;
  414. interval = 256;
  415. while (1) {
  416. tcr = comp * interval;
  417. if (tcr < 129*256) break;
  418. if (--interval == 1) break;
  419. }
  420. tcr = tcr >> 8;
  421. tcr = 256 - tcr;
  422. }
  423. RTC_TCR = ((interval - 1) << 8) | tcr;
  424. }
  425. #else
  426. unsigned long rtc_get(void) { return 0; }
  427. void rtc_set(unsigned long t) { }
  428. void rtc_compensate(int adjust) { }
  429. #endif
  430. #if 0
  431. // TODO: build system should define this
  432. // so RTC is automatically initialized to approx correct time
  433. // at least when the program begins running right after upload
  434. #ifndef TIME_T
  435. #define TIME_T 1350160272
  436. #endif
  437. void init_rtc(void)
  438. {
  439. serial_print("init_rtc\n");
  440. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  441. // enable the RTC crystal oscillator, for approx 12pf crystal
  442. if (!(RTC_CR & RTC_CR_OSCE)) {
  443. serial_print("start RTC oscillator\n");
  444. RTC_SR = 0;
  445. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  446. }
  447. // should wait for crystal to stabilize.....
  448. serial_print("SR=");
  449. serial_phex32(RTC_SR);
  450. serial_print("\n");
  451. serial_print("CR=");
  452. serial_phex32(RTC_CR);
  453. serial_print("\n");
  454. serial_print("TSR=");
  455. serial_phex32(RTC_TSR);
  456. serial_print("\n");
  457. serial_print("TCR=");
  458. serial_phex32(RTC_TCR);
  459. serial_print("\n");
  460. if (RTC_SR & RTC_SR_TIF) {
  461. // enable the RTC
  462. RTC_SR = 0;
  463. RTC_TPR = 0;
  464. RTC_TSR = TIME_T;
  465. RTC_SR = RTC_SR_TCE;
  466. }
  467. }
  468. #endif
  469. extern void usb_init(void);
  470. // create a default PWM at the same 488.28 Hz as Arduino Uno
  471. #if defined(KINETISK)
  472. #define F_TIMER F_BUS
  473. #elif defined(KINETISL)
  474. #if F_CPU > 16000000
  475. #define F_TIMER (F_PLL/2)
  476. #else
  477. #define F_TIMER (F_PLL)
  478. #endif//Low Power
  479. #endif
  480. #if F_TIMER == 120000000
  481. #define DEFAULT_FTM_MOD (61440 - 1)
  482. #define DEFAULT_FTM_PRESCALE 2
  483. #elif F_TIMER == 108000000
  484. #define DEFAULT_FTM_MOD (55296 - 1)
  485. #define DEFAULT_FTM_PRESCALE 2
  486. #elif F_TIMER == 96000000
  487. #define DEFAULT_FTM_MOD (49152 - 1)
  488. #define DEFAULT_FTM_PRESCALE 2
  489. #elif F_TIMER == 90000000
  490. #define DEFAULT_FTM_MOD (46080 - 1)
  491. #define DEFAULT_FTM_PRESCALE 2
  492. #elif F_TIMER == 80000000
  493. #define DEFAULT_FTM_MOD (40960 - 1)
  494. #define DEFAULT_FTM_PRESCALE 2
  495. #elif F_TIMER == 72000000
  496. #define DEFAULT_FTM_MOD (36864 - 1)
  497. #define DEFAULT_FTM_PRESCALE 2
  498. #elif F_TIMER == 64000000
  499. #define DEFAULT_FTM_MOD (65536 - 1)
  500. #define DEFAULT_FTM_PRESCALE 1
  501. #elif F_TIMER == 60000000
  502. #define DEFAULT_FTM_MOD (61440 - 1)
  503. #define DEFAULT_FTM_PRESCALE 1
  504. #elif F_TIMER == 56000000
  505. #define DEFAULT_FTM_MOD (57344 - 1)
  506. #define DEFAULT_FTM_PRESCALE 1
  507. #elif F_TIMER == 54000000
  508. #define DEFAULT_FTM_MOD (55296 - 1)
  509. #define DEFAULT_FTM_PRESCALE 1
  510. #elif F_TIMER == 48000000
  511. #define DEFAULT_FTM_MOD (49152 - 1)
  512. #define DEFAULT_FTM_PRESCALE 1
  513. #elif F_TIMER == 40000000
  514. #define DEFAULT_FTM_MOD (40960 - 1)
  515. #define DEFAULT_FTM_PRESCALE 1
  516. #elif F_TIMER == 36000000
  517. #define DEFAULT_FTM_MOD (36864 - 1)
  518. #define DEFAULT_FTM_PRESCALE 1
  519. #elif F_TIMER == 24000000
  520. #define DEFAULT_FTM_MOD (49152 - 1)
  521. #define DEFAULT_FTM_PRESCALE 0
  522. #elif F_TIMER == 16000000
  523. #define DEFAULT_FTM_MOD (32768 - 1)
  524. #define DEFAULT_FTM_PRESCALE 0
  525. #elif F_TIMER == 8000000
  526. #define DEFAULT_FTM_MOD (16384 - 1)
  527. #define DEFAULT_FTM_PRESCALE 0
  528. #elif F_TIMER == 4000000
  529. #define DEFAULT_FTM_MOD (8192 - 1)
  530. #define DEFAULT_FTM_PRESCALE 0
  531. #elif F_TIMER == 2000000
  532. #define DEFAULT_FTM_MOD (4096 - 1)
  533. #define DEFAULT_FTM_PRESCALE 0
  534. #endif
  535. //void init_pins(void)
  536. void _init_Teensyduino_internal_(void)
  537. {
  538. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  539. NVIC_ENABLE_IRQ(IRQ_PORTA);
  540. NVIC_ENABLE_IRQ(IRQ_PORTB);
  541. NVIC_ENABLE_IRQ(IRQ_PORTC);
  542. NVIC_ENABLE_IRQ(IRQ_PORTD);
  543. NVIC_ENABLE_IRQ(IRQ_PORTE);
  544. #elif defined(__MKL26Z64__)
  545. NVIC_ENABLE_IRQ(IRQ_PORTA);
  546. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  547. #endif
  548. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  549. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  550. FTM0_CNT = 0;
  551. FTM0_MOD = DEFAULT_FTM_MOD;
  552. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  553. FTM0_C1SC = 0x28;
  554. FTM0_C2SC = 0x28;
  555. FTM0_C3SC = 0x28;
  556. FTM0_C4SC = 0x28;
  557. FTM0_C5SC = 0x28;
  558. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  559. FTM0_C6SC = 0x28;
  560. FTM0_C7SC = 0x28;
  561. #endif
  562. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  563. FTM3_C0SC = 0x28;
  564. FTM3_C1SC = 0x28;
  565. FTM3_C2SC = 0x28;
  566. FTM3_C3SC = 0x28;
  567. FTM3_C4SC = 0x28;
  568. FTM3_C5SC = 0x28;
  569. FTM3_C6SC = 0x28;
  570. FTM3_C7SC = 0x28;
  571. #endif
  572. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  573. FTM1_CNT = 0;
  574. FTM1_MOD = DEFAULT_FTM_MOD;
  575. FTM1_C0SC = 0x28;
  576. FTM1_C1SC = 0x28;
  577. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  578. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  579. FTM2_CNT = 0;
  580. FTM2_MOD = DEFAULT_FTM_MOD;
  581. FTM2_C0SC = 0x28;
  582. FTM2_C1SC = 0x28;
  583. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  584. #endif
  585. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  586. FTM3_CNT = 0;
  587. FTM3_MOD = DEFAULT_FTM_MOD;
  588. FTM3_C0SC = 0x28;
  589. FTM3_C1SC = 0x28;
  590. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  591. #endif
  592. #if defined(__MK66FX1M0__)
  593. SIM_SCGC2 |= SIM_SCGC2_TPM1;
  594. SIM_SOPT2 |= SIM_SOPT2_TPMSRC(2);
  595. TPM1_CNT = 0;
  596. TPM1_MOD = 32767;
  597. TPM1_C0SC = 0x28;
  598. TPM1_C1SC = 0x28;
  599. TPM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0);
  600. #endif
  601. analog_init();
  602. // for background about this startup delay, please see these conversations
  603. // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
  604. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  605. delay(400);
  606. usb_init();
  607. }
  608. #if defined(__MK20DX128__)
  609. #define FTM0_CH0_PIN 22
  610. #define FTM0_CH1_PIN 23
  611. #define FTM0_CH2_PIN 9
  612. #define FTM0_CH3_PIN 10
  613. #define FTM0_CH4_PIN 6
  614. #define FTM0_CH5_PIN 20
  615. #define FTM0_CH6_PIN 21
  616. #define FTM0_CH7_PIN 5
  617. #define FTM1_CH0_PIN 3
  618. #define FTM1_CH1_PIN 4
  619. #elif defined(__MK20DX256__)
  620. #define FTM0_CH0_PIN 22
  621. #define FTM0_CH1_PIN 23
  622. #define FTM0_CH2_PIN 9
  623. #define FTM0_CH3_PIN 10
  624. #define FTM0_CH4_PIN 6
  625. #define FTM0_CH5_PIN 20
  626. #define FTM0_CH6_PIN 21
  627. #define FTM0_CH7_PIN 5
  628. #define FTM1_CH0_PIN 3
  629. #define FTM1_CH1_PIN 4
  630. #define FTM2_CH0_PIN 32
  631. #define FTM2_CH1_PIN 25
  632. #elif defined(__MKL26Z64__)
  633. #define FTM0_CH0_PIN 22
  634. #define FTM0_CH1_PIN 23
  635. #define FTM0_CH2_PIN 9
  636. #define FTM0_CH3_PIN 10
  637. #define FTM0_CH4_PIN 6
  638. #define FTM0_CH5_PIN 20
  639. #define FTM1_CH0_PIN 16
  640. #define FTM1_CH1_PIN 17
  641. #define FTM2_CH0_PIN 3
  642. #define FTM2_CH1_PIN 4
  643. #elif defined(__MK64FX512__)
  644. #define FTM0_CH0_PIN 22
  645. #define FTM0_CH1_PIN 23
  646. #define FTM0_CH2_PIN 9
  647. #define FTM0_CH3_PIN 10
  648. #define FTM0_CH4_PIN 6
  649. #define FTM0_CH5_PIN 20
  650. #define FTM0_CH6_PIN 21
  651. #define FTM0_CH7_PIN 5
  652. #define FTM1_CH0_PIN 3
  653. #define FTM1_CH1_PIN 4
  654. #define FTM2_CH0_PIN 29
  655. #define FTM2_CH1_PIN 30
  656. #define FTM3_CH0_PIN 2
  657. #define FTM3_CH1_PIN 14
  658. #define FTM3_CH2_PIN 7
  659. #define FTM3_CH3_PIN 8
  660. #define FTM3_CH4_PIN 35
  661. #define FTM3_CH5_PIN 36
  662. #define FTM3_CH6_PIN 37
  663. #define FTM3_CH7_PIN 38
  664. #elif defined(__MK66FX1M0__)
  665. #define FTM0_CH0_PIN 22
  666. #define FTM0_CH1_PIN 23
  667. #define FTM0_CH2_PIN 9
  668. #define FTM0_CH3_PIN 10
  669. #define FTM0_CH4_PIN 6
  670. #define FTM0_CH5_PIN 20
  671. #define FTM0_CH6_PIN 21
  672. #define FTM0_CH7_PIN 5
  673. #define FTM1_CH0_PIN 3
  674. #define FTM1_CH1_PIN 4
  675. #define FTM2_CH0_PIN 29
  676. #define FTM2_CH1_PIN 30
  677. #define FTM3_CH0_PIN 2
  678. #define FTM3_CH1_PIN 14
  679. #define FTM3_CH2_PIN 7
  680. #define FTM3_CH3_PIN 8
  681. #define FTM3_CH4_PIN 35
  682. #define FTM3_CH5_PIN 36
  683. #define FTM3_CH6_PIN 37
  684. #define FTM3_CH7_PIN 38
  685. #define TPM1_CH0_PIN 16
  686. #define TPM1_CH1_PIN 17
  687. #endif
  688. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  689. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  690. static uint8_t analog_write_res = 8;
  691. // SOPT4 is SIM select clocks?
  692. // FTM is clocked by the bus clock, either 24 or 48 MHz
  693. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  694. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  695. void analogWrite(uint8_t pin, int val)
  696. {
  697. uint32_t cval, max;
  698. #if defined(__MK20DX256__)
  699. if (pin == A14) {
  700. uint8_t res = analog_write_res;
  701. if (res < 12) {
  702. val <<= 12 - res;
  703. } else if (res > 12) {
  704. val >>= res - 12;
  705. }
  706. analogWriteDAC0(val);
  707. return;
  708. }
  709. #elif defined(__MKL26Z64__)
  710. if (pin == A12) {
  711. uint8_t res = analog_write_res;
  712. if (res < 12) {
  713. val <<= 12 - res;
  714. } else if (res > 12) {
  715. val >>= res - 12;
  716. }
  717. analogWriteDAC0(val);
  718. return;
  719. }
  720. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  721. if (pin == A21 || pin == A22) {
  722. uint8_t res = analog_write_res;
  723. if (res < 12) {
  724. val <<= 12 - res;
  725. } else if (res > 12) {
  726. val >>= res - 12;
  727. }
  728. if (pin == A21) analogWriteDAC0(val);
  729. else analogWriteDAC1(val);
  730. return;
  731. }
  732. #endif
  733. max = 1 << analog_write_res;
  734. if (val <= 0) {
  735. digitalWrite(pin, LOW);
  736. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  737. return;
  738. } else if (val >= max) {
  739. digitalWrite(pin, HIGH);
  740. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  741. return;
  742. }
  743. //serial_print("analogWrite\n");
  744. //serial_print("val = ");
  745. //serial_phex32(val);
  746. //serial_print("\n");
  747. //serial_print("analog_write_res = ");
  748. //serial_phex(analog_write_res);
  749. //serial_print("\n");
  750. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  751. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  752. #if defined(FTM2_CH0_PIN)
  753. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  754. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  755. #endif
  756. #if defined(FTM3_CH0_PIN)
  757. } else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN || pin == FTM3_CH2_PIN
  758. || pin == FTM3_CH3_PIN || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  759. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  760. cval = ((uint32_t)val * (uint32_t)(FTM3_MOD + 1)) >> analog_write_res;
  761. #endif
  762. #if defined(TPM1_CH0_PIN)
  763. } else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  764. cval = ((uint32_t)val * (uint32_t)(TPM1_MOD + 1)) >> analog_write_res;
  765. #endif
  766. } else {
  767. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  768. }
  769. //serial_print("cval = ");
  770. //serial_phex32(cval);
  771. //serial_print("\n");
  772. switch (pin) {
  773. #ifdef FTM0_CH0_PIN
  774. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  775. FTM0_C0V = cval;
  776. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  777. break;
  778. #endif
  779. #ifdef FTM0_CH1_PIN
  780. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  781. FTM0_C1V = cval;
  782. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  783. break;
  784. #endif
  785. #ifdef FTM0_CH2_PIN
  786. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  787. FTM0_C2V = cval;
  788. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  789. break;
  790. #endif
  791. #ifdef FTM0_CH3_PIN
  792. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  793. FTM0_C3V = cval;
  794. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  795. break;
  796. #endif
  797. #ifdef FTM0_CH4_PIN
  798. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  799. FTM0_C4V = cval;
  800. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  801. break;
  802. #endif
  803. #ifdef FTM0_CH5_PIN
  804. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  805. FTM0_C5V = cval;
  806. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  807. break;
  808. #endif
  809. #ifdef FTM0_CH6_PIN
  810. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  811. FTM0_C6V = cval;
  812. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  813. break;
  814. #endif
  815. #ifdef FTM0_CH7_PIN
  816. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  817. FTM0_C7V = cval;
  818. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  819. break;
  820. #endif
  821. #ifdef FTM1_CH0_PIN
  822. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  823. FTM1_C0V = cval;
  824. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  825. break;
  826. #endif
  827. #ifdef FTM1_CH1_PIN
  828. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  829. FTM1_C1V = cval;
  830. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  831. break;
  832. #endif
  833. #ifdef FTM2_CH0_PIN
  834. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  835. FTM2_C0V = cval;
  836. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  837. break;
  838. #endif
  839. #ifdef FTM2_CH1_PIN
  840. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  841. FTM2_C1V = cval;
  842. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  843. break;
  844. #endif
  845. #ifdef FTM3_CH0_PIN
  846. case FTM3_CH0_PIN:
  847. FTM3_C0V = cval;
  848. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  849. break;
  850. #endif
  851. #ifdef FTM3_CH1_PIN
  852. case FTM3_CH1_PIN:
  853. FTM3_C1V = cval;
  854. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  855. break;
  856. #endif
  857. #ifdef FTM3_CH2_PIN
  858. case FTM3_CH2_PIN:
  859. FTM3_C2V = cval;
  860. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  861. break;
  862. #endif
  863. #ifdef FTM3_CH3_PIN
  864. case FTM3_CH3_PIN:
  865. FTM3_C3V = cval;
  866. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  867. break;
  868. #endif
  869. #ifdef FTM3_CH4_PIN
  870. case FTM3_CH4_PIN:
  871. FTM3_C4V = cval;
  872. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  873. break;
  874. #endif
  875. #ifdef FTM3_CH5_PIN
  876. case FTM3_CH5_PIN:
  877. FTM3_C5V = cval;
  878. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  879. break;
  880. #endif
  881. #ifdef FTM3_CH6_PIN
  882. case FTM3_CH6_PIN:
  883. FTM3_C6V = cval;
  884. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  885. break;
  886. #endif
  887. #ifdef FTM3_CH7_PIN
  888. case FTM3_CH7_PIN:
  889. FTM3_C7V = cval;
  890. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  891. break;
  892. #endif
  893. #ifdef TPM1_CH0_PIN
  894. case TPM1_CH0_PIN:
  895. TPM1_C0V = cval;
  896. FTM_PINCFG(TPM1_CH0_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  897. break;
  898. #endif
  899. #ifdef TPM1_CH1_PIN
  900. case TPM1_CH1_PIN:
  901. TPM1_C1V = cval;
  902. FTM_PINCFG(TPM1_CH1_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  903. break;
  904. #endif
  905. default:
  906. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  907. pinMode(pin, OUTPUT);
  908. }
  909. }
  910. void analogWriteRes(uint32_t bits)
  911. {
  912. if (bits < 1) {
  913. bits = 1;
  914. } else if (bits > 16) {
  915. bits = 16;
  916. }
  917. analog_write_res = bits;
  918. }
  919. void analogWriteFrequency(uint8_t pin, float frequency)
  920. {
  921. uint32_t prescale, mod, ftmClock, ftmClockSource;
  922. float minfreq;
  923. //serial_print("analogWriteFrequency: pin = ");
  924. //serial_phex(pin);
  925. //serial_print(", freq = ");
  926. //serial_phex32((uint32_t)frequency);
  927. //serial_print("\n");
  928. #ifdef TPM1_CH0_PIN
  929. if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  930. ftmClockSource = 1;
  931. ftmClock = 16000000;
  932. } else
  933. #endif
  934. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) {
  935. // frequency is too low for working with F_TIMER:
  936. ftmClockSource = 2; // Use alternative 31250Hz clock source
  937. ftmClock = 31250; // Set variable for the actual timer clock frequency
  938. } else {
  939. ftmClockSource = 1; // Use default F_TIMER clock source
  940. ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
  941. }
  942. for (prescale = 0; prescale < 7; prescale++) {
  943. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  944. if (frequency >= minfreq) break;
  945. }
  946. //serial_print("F_TIMER/ftm_Clock = ");
  947. //serial_phex32(ftmClock >> prescale);
  948. //serial_print("\n");
  949. //serial_print("prescale = ");
  950. //serial_phex(prescale);
  951. //serial_print("\n");
  952. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  953. if (mod > 65535) mod = 65535;
  954. //serial_print("mod = ");
  955. //serial_phex32(mod);
  956. //serial_print("\n");
  957. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  958. FTM1_SC = 0;
  959. FTM1_CNT = 0;
  960. FTM1_MOD = mod;
  961. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  962. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  963. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  964. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  965. #ifdef FTM0_CH6_PIN
  966. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  967. #endif
  968. ) {
  969. FTM0_SC = 0;
  970. FTM0_CNT = 0;
  971. FTM0_MOD = mod;
  972. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  973. }
  974. #ifdef FTM2_CH0_PIN
  975. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  976. FTM2_SC = 0;
  977. FTM2_CNT = 0;
  978. FTM2_MOD = mod;
  979. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  980. }
  981. #endif
  982. #ifdef FTM3_CH0_PIN
  983. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  984. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  985. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  986. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  987. FTM3_SC = 0;
  988. FTM3_CNT = 0;
  989. FTM3_MOD = mod;
  990. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  991. }
  992. #endif
  993. #ifdef TPM1_CH0_PIN
  994. else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  995. TPM1_SC = 0;
  996. TPM1_CNT = 0;
  997. TPM1_MOD = mod;
  998. TPM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale);
  999. }
  1000. #endif
  1001. }
  1002. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  1003. void digitalWrite(uint8_t pin, uint8_t val)
  1004. {
  1005. if (pin >= CORE_NUM_DIGITAL) return;
  1006. #ifdef KINETISK
  1007. if (*portModeRegister(pin)) {
  1008. if (val) {
  1009. *portSetRegister(pin) = 1;
  1010. } else {
  1011. *portClearRegister(pin) = 1;
  1012. }
  1013. #else
  1014. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  1015. if (val) {
  1016. *portSetRegister(pin) = digitalPinToBitMask(pin);
  1017. } else {
  1018. *portClearRegister(pin) = digitalPinToBitMask(pin);
  1019. }
  1020. #endif
  1021. } else {
  1022. volatile uint32_t *config = portConfigRegister(pin);
  1023. if (val) {
  1024. // TODO use bitband for atomic read-mod-write
  1025. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  1026. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  1027. } else {
  1028. // TODO use bitband for atomic read-mod-write
  1029. *config &= ~(PORT_PCR_PE);
  1030. //*config = PORT_PCR_MUX(1);
  1031. }
  1032. }
  1033. }
  1034. uint8_t digitalRead(uint8_t pin)
  1035. {
  1036. if (pin >= CORE_NUM_DIGITAL) return 0;
  1037. #ifdef KINETISK
  1038. return *portInputRegister(pin);
  1039. #else
  1040. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  1041. #endif
  1042. }
  1043. void pinMode(uint8_t pin, uint8_t mode)
  1044. {
  1045. volatile uint32_t *config;
  1046. if (pin >= CORE_NUM_DIGITAL) return;
  1047. config = portConfigRegister(pin);
  1048. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  1049. #ifdef KINETISK
  1050. *portModeRegister(pin) = 1;
  1051. #else
  1052. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  1053. #endif
  1054. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  1055. if (mode == OUTPUT_OPENDRAIN) {
  1056. *config |= PORT_PCR_ODE;
  1057. } else {
  1058. *config &= ~PORT_PCR_ODE;
  1059. }
  1060. } else {
  1061. #ifdef KINETISK
  1062. *portModeRegister(pin) = 0;
  1063. #else
  1064. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  1065. #endif
  1066. if (mode == INPUT || mode == INPUT_PULLUP || mode == INPUT_PULLDOWN) {
  1067. *config = PORT_PCR_MUX(1);
  1068. if (mode == INPUT_PULLUP) {
  1069. *config |= (PORT_PCR_PE | PORT_PCR_PS); // pullup
  1070. } else if (mode == INPUT_PULLDOWN) {
  1071. *config |= (PORT_PCR_PE); // pulldown
  1072. *config &= ~(PORT_PCR_PS);
  1073. }
  1074. } else {
  1075. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  1076. }
  1077. }
  1078. }
  1079. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  1080. {
  1081. if (bitOrder == LSBFIRST) {
  1082. shiftOut_lsbFirst(dataPin, clockPin, value);
  1083. } else {
  1084. shiftOut_msbFirst(dataPin, clockPin, value);
  1085. }
  1086. }
  1087. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1088. {
  1089. uint8_t mask;
  1090. for (mask=0x01; mask; mask <<= 1) {
  1091. digitalWrite(dataPin, value & mask);
  1092. digitalWrite(clockPin, HIGH);
  1093. digitalWrite(clockPin, LOW);
  1094. }
  1095. }
  1096. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1097. {
  1098. uint8_t mask;
  1099. for (mask=0x80; mask; mask >>= 1) {
  1100. digitalWrite(dataPin, value & mask);
  1101. digitalWrite(clockPin, HIGH);
  1102. digitalWrite(clockPin, LOW);
  1103. }
  1104. }
  1105. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1106. {
  1107. if (bitOrder == LSBFIRST) {
  1108. return shiftIn_lsbFirst(dataPin, clockPin);
  1109. } else {
  1110. return shiftIn_msbFirst(dataPin, clockPin);
  1111. }
  1112. }
  1113. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1114. {
  1115. uint8_t mask, value=0;
  1116. for (mask=0x01; mask; mask <<= 1) {
  1117. digitalWrite(clockPin, HIGH);
  1118. if (digitalRead(dataPin)) value |= mask;
  1119. digitalWrite(clockPin, LOW);
  1120. }
  1121. return value;
  1122. }
  1123. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1124. {
  1125. uint8_t mask, value=0;
  1126. for (mask=0x80; mask; mask >>= 1) {
  1127. digitalWrite(clockPin, HIGH);
  1128. if (digitalRead(dataPin)) value |= mask;
  1129. digitalWrite(clockPin, LOW);
  1130. }
  1131. return value;
  1132. }
  1133. // the systick interrupt is supposed to increment this at 1 kHz rate
  1134. volatile uint32_t systick_millis_count = 0;
  1135. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1136. uint32_t micros(void)
  1137. {
  1138. uint32_t count, current, istatus;
  1139. __disable_irq();
  1140. current = SYST_CVR;
  1141. count = systick_millis_count;
  1142. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1143. __enable_irq();
  1144. //systick_current = current;
  1145. //systick_count = count;
  1146. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1147. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1148. current = ((F_CPU / 1000) - 1) - current;
  1149. #if defined(KINETISL) && F_CPU == 48000000
  1150. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1151. #elif defined(KINETISL) && F_CPU == 24000000
  1152. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1153. #endif
  1154. return count * 1000 + current / (F_CPU / 1000000);
  1155. }
  1156. void delay(uint32_t ms)
  1157. {
  1158. uint32_t start = micros();
  1159. if (ms > 0) {
  1160. while (1) {
  1161. while ((micros() - start) >= 1000) {
  1162. ms--;
  1163. if (ms == 0) return;
  1164. start += 1000;
  1165. }
  1166. yield();
  1167. }
  1168. }
  1169. }
  1170. // TODO: verify these result in correct timeouts...
  1171. #if F_CPU == 240000000
  1172. #define PULSEIN_LOOPS_PER_USEC 33
  1173. #elif F_CPU == 216000000
  1174. #define PULSEIN_LOOPS_PER_USEC 31
  1175. #elif F_CPU == 192000000
  1176. #define PULSEIN_LOOPS_PER_USEC 29
  1177. #elif F_CPU == 180000000
  1178. #define PULSEIN_LOOPS_PER_USEC 27
  1179. #elif F_CPU == 168000000
  1180. #define PULSEIN_LOOPS_PER_USEC 25
  1181. #elif F_CPU == 144000000
  1182. #define PULSEIN_LOOPS_PER_USEC 21
  1183. #elif F_CPU == 120000000
  1184. #define PULSEIN_LOOPS_PER_USEC 18
  1185. #elif F_CPU == 96000000
  1186. #define PULSEIN_LOOPS_PER_USEC 14
  1187. #elif F_CPU == 72000000
  1188. #define PULSEIN_LOOPS_PER_USEC 10
  1189. #elif F_CPU == 48000000
  1190. #define PULSEIN_LOOPS_PER_USEC 7
  1191. #elif F_CPU == 24000000
  1192. #define PULSEIN_LOOPS_PER_USEC 4
  1193. #elif F_CPU == 16000000
  1194. #define PULSEIN_LOOPS_PER_USEC 1
  1195. #elif F_CPU == 8000000
  1196. #define PULSEIN_LOOPS_PER_USEC 1
  1197. #elif F_CPU == 4000000
  1198. #define PULSEIN_LOOPS_PER_USEC 1
  1199. #elif F_CPU == 2000000
  1200. #define PULSEIN_LOOPS_PER_USEC 1
  1201. #endif
  1202. #if defined(KINETISK)
  1203. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1204. {
  1205. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1206. uint32_t usec_start, usec_stop;
  1207. // wait for any previous pulse to end
  1208. while (*reg) {
  1209. if (--timeout_count == 0) return 0;
  1210. }
  1211. // wait for the pulse to start
  1212. while (!*reg) {
  1213. if (--timeout_count == 0) return 0;
  1214. }
  1215. usec_start = micros();
  1216. // wait for the pulse to stop
  1217. while (*reg) {
  1218. if (--timeout_count == 0) return 0;
  1219. }
  1220. usec_stop = micros();
  1221. return usec_stop - usec_start;
  1222. }
  1223. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1224. {
  1225. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1226. uint32_t usec_start, usec_stop;
  1227. // wait for any previous pulse to end
  1228. while (!*reg) {
  1229. if (--timeout_count == 0) return 0;
  1230. }
  1231. // wait for the pulse to start
  1232. while (*reg) {
  1233. if (--timeout_count == 0) return 0;
  1234. }
  1235. usec_start = micros();
  1236. // wait for the pulse to stop
  1237. while (!*reg) {
  1238. if (--timeout_count == 0) return 0;
  1239. }
  1240. usec_stop = micros();
  1241. return usec_stop - usec_start;
  1242. }
  1243. // TODO: an inline version should handle the common case where state is const
  1244. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1245. {
  1246. if (pin >= CORE_NUM_DIGITAL) return 0;
  1247. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1248. return pulseIn_low(portInputRegister(pin), timeout);;
  1249. }
  1250. #elif defined(KINETISL)
  1251. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1252. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1253. {
  1254. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1255. uint32_t usec_start, usec_stop;
  1256. // wait for any previous pulse to end
  1257. while (*reg & mask) {
  1258. if (--timeout_count == 0) return -1;
  1259. }
  1260. // wait for the pulse to start
  1261. while (!(*reg & mask)) {
  1262. if (--timeout_count == 0) return 0;
  1263. }
  1264. usec_start = micros();
  1265. // wait for the pulse to stop
  1266. while (*reg & mask) {
  1267. if (--timeout_count == 0) return 0;
  1268. }
  1269. usec_stop = micros();
  1270. return usec_stop - usec_start;
  1271. }
  1272. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1273. {
  1274. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1275. uint32_t usec_start, usec_stop;
  1276. // wait for any previous pulse to end
  1277. while (!(*reg & mask)) {
  1278. if (--timeout_count == 0) return 0;
  1279. }
  1280. // wait for the pulse to start
  1281. while (*reg & mask) {
  1282. if (--timeout_count == 0) return 0;
  1283. }
  1284. usec_start = micros();
  1285. // wait for the pulse to stop
  1286. while (!(*reg & mask)) {
  1287. if (--timeout_count == 0) return 0;
  1288. }
  1289. usec_stop = micros();
  1290. return usec_stop - usec_start;
  1291. }
  1292. // TODO: an inline version should handle the common case where state is const
  1293. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1294. {
  1295. if (pin >= CORE_NUM_DIGITAL) return 0;
  1296. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1297. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1298. }
  1299. #endif