Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #ifdef HAS_KINETISK_UART3
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  39. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  40. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  41. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  42. ////////////////////////////////////////////////////////////////
  43. // changes not recommended below this point....
  44. ////////////////////////////////////////////////////////////////
  45. #ifdef SERIAL_9BIT_SUPPORT
  46. static uint8_t use9Bits = 0;
  47. #define BUFTYPE uint16_t
  48. #else
  49. #define BUFTYPE uint8_t
  50. #define use9Bits 0
  51. #endif
  52. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  53. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  54. static volatile uint8_t transmitting = 0;
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #if TX_BUFFER_SIZE > 255
  62. static volatile uint16_t tx_buffer_head = 0;
  63. static volatile uint16_t tx_buffer_tail = 0;
  64. #else
  65. static volatile uint8_t tx_buffer_head = 0;
  66. static volatile uint8_t tx_buffer_tail = 0;
  67. #endif
  68. #if RX_BUFFER_SIZE > 255
  69. static volatile uint16_t rx_buffer_head = 0;
  70. static volatile uint16_t rx_buffer_tail = 0;
  71. #else
  72. static volatile uint8_t rx_buffer_head = 0;
  73. static volatile uint8_t rx_buffer_tail = 0;
  74. #endif
  75. static uint8_t rx_pin_num = 31;
  76. static uint8_t tx_pin_num = 32;
  77. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  78. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  79. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  80. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  81. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  82. #define C2_TX_INACTIVE C2_ENABLE
  83. void serial4_begin(uint32_t divisor)
  84. {
  85. SIM_SCGC4 |= SIM_SCGC4_UART3; // turn on clock, TODO: use bitband
  86. rx_buffer_head = 0;
  87. rx_buffer_tail = 0;
  88. tx_buffer_head = 0;
  89. tx_buffer_tail = 0;
  90. transmitting = 0;
  91. switch (rx_pin_num) {
  92. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  93. case 63: CORE_PIN63_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  94. }
  95. switch (tx_pin_num) {
  96. case 32: CORE_PIN32_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  97. case 62: CORE_PIN62_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  98. }
  99. UART3_BDH = (divisor >> 13) & 0x1F;
  100. UART3_BDL = (divisor >> 5) & 0xFF;
  101. UART3_C4 = divisor & 0x1F;
  102. UART3_C1 = 0;
  103. UART3_PFIFO = 0;
  104. UART3_C2 = C2_TX_INACTIVE;
  105. NVIC_SET_PRIORITY(IRQ_UART3_STATUS, IRQ_PRIORITY);
  106. NVIC_ENABLE_IRQ(IRQ_UART3_STATUS);
  107. }
  108. void serial4_format(uint32_t format)
  109. {
  110. uint8_t c;
  111. c = UART3_C1;
  112. c = (c & ~0x13) | (format & 0x03); // configure parity
  113. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  114. UART3_C1 = c;
  115. if ((format & 0x0F) == 0x04) UART3_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  116. c = UART3_S2 & ~0x10;
  117. if (format & 0x10) c |= 0x10; // rx invert
  118. UART3_S2 = c;
  119. c = UART3_C3 & ~0x10;
  120. if (format & 0x20) c |= 0x10; // tx invert
  121. UART3_C3 = c;
  122. #ifdef SERIAL_9BIT_SUPPORT
  123. c = UART3_C4 & 0x1F;
  124. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  125. UART3_C4 = c;
  126. use9Bits = format & 0x80;
  127. #endif
  128. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  129. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  130. if ( format & 0x100) {
  131. uint8_t bdl = UART3_BDL;
  132. UART3_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  133. UART3_BDL = bdl; // Says BDH not acted on until BDL is written
  134. }
  135. #endif
  136. }
  137. void serial4_end(void)
  138. {
  139. if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return;
  140. while (transmitting) yield(); // wait for buffered data to send
  141. NVIC_DISABLE_IRQ(IRQ_UART3_STATUS);
  142. UART3_C2 = 0;
  143. CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  144. CORE_PIN32_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  145. switch (rx_pin_num) {
  146. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  147. case 63: CORE_PIN63_CONFIG = 0; break;
  148. }
  149. switch (tx_pin_num & 127) {
  150. case 32: CORE_PIN32_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  151. case 62: CORE_PIN62_CONFIG = 0; break;
  152. }
  153. rx_buffer_head = 0;
  154. rx_buffer_tail = 0;
  155. if (rts_pin) rts_deassert();
  156. }
  157. void serial4_set_transmit_pin(uint8_t pin)
  158. {
  159. while (transmitting) ;
  160. pinMode(pin, OUTPUT);
  161. digitalWrite(pin, LOW);
  162. transmit_pin = portOutputRegister(pin);
  163. }
  164. void serial4_set_tx(uint8_t pin, uint8_t opendrain)
  165. {
  166. uint32_t cfg;
  167. if (opendrain) pin |= 128;
  168. if (pin == tx_pin_num) return;
  169. if ((SIM_SCGC4 & SIM_SCGC4_UART3)) {
  170. switch (tx_pin_num & 127) {
  171. case 32: CORE_PIN32_CONFIG = 0; break; // PTB11
  172. case 62: CORE_PIN62_CONFIG = 0; break;
  173. }
  174. if (opendrain) {
  175. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  176. } else {
  177. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  178. }
  179. switch (pin & 127) {
  180. case 32: CORE_PIN32_CONFIG = cfg | PORT_PCR_MUX(3); break;
  181. case 62: CORE_PIN62_CONFIG = cfg | PORT_PCR_MUX(3);; break;
  182. }
  183. }
  184. tx_pin_num = pin;
  185. }
  186. void serial4_set_rx(uint8_t pin)
  187. {
  188. if (pin == rx_pin_num) return;
  189. if ((SIM_SCGC4 & SIM_SCGC4_UART3)) {
  190. switch (rx_pin_num) {
  191. case 31: CORE_PIN31_CONFIG = 0; break; // PTC3
  192. case 63: CORE_PIN63_CONFIG = 0; break;
  193. }
  194. switch (pin) {
  195. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  196. case 63: CORE_PIN63_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  197. }
  198. }
  199. rx_pin_num = pin;
  200. }
  201. int serial4_set_rts(uint8_t pin)
  202. {
  203. if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return 0;
  204. if (pin < CORE_NUM_DIGITAL) {
  205. rts_pin = portOutputRegister(pin);
  206. pinMode(pin, OUTPUT);
  207. rts_assert();
  208. } else {
  209. rts_pin = NULL;
  210. return 0;
  211. }
  212. return 1;
  213. }
  214. int serial4_set_cts(uint8_t pin)
  215. {
  216. return 0;
  217. }
  218. void serial4_putchar(uint32_t c)
  219. {
  220. uint32_t head, n;
  221. if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return;
  222. if (transmit_pin) transmit_assert();
  223. head = tx_buffer_head;
  224. if (++head >= TX_BUFFER_SIZE) head = 0;
  225. while (tx_buffer_tail == head) {
  226. int priority = nvic_execution_priority();
  227. if (priority <= IRQ_PRIORITY) {
  228. if ((UART3_S1 & UART_S1_TDRE)) {
  229. uint32_t tail = tx_buffer_tail;
  230. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  231. n = tx_buffer[tail];
  232. if (use9Bits) UART3_C3 = (UART3_C3 & ~0x40) | ((n & 0x100) >> 2);
  233. UART3_D = n;
  234. tx_buffer_tail = tail;
  235. }
  236. } else if (priority >= 256) {
  237. yield(); // wait
  238. }
  239. }
  240. tx_buffer[head] = c;
  241. transmitting = 1;
  242. tx_buffer_head = head;
  243. UART3_C2 = C2_TX_ACTIVE;
  244. }
  245. void serial4_write(const void *buf, unsigned int count)
  246. {
  247. const uint8_t *p = (const uint8_t *)buf;
  248. while (count-- > 0) serial4_putchar(*p++);
  249. }
  250. void serial4_flush(void)
  251. {
  252. while (transmitting) yield(); // wait
  253. }
  254. int serial4_write_buffer_free(void)
  255. {
  256. uint32_t head, tail;
  257. head = tx_buffer_head;
  258. tail = tx_buffer_tail;
  259. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  260. return tail - head - 1;
  261. }
  262. int serial4_available(void)
  263. {
  264. uint32_t head, tail;
  265. head = rx_buffer_head;
  266. tail = rx_buffer_tail;
  267. if (head >= tail) return head - tail;
  268. return RX_BUFFER_SIZE + head - tail;
  269. }
  270. int serial4_getchar(void)
  271. {
  272. uint32_t head, tail;
  273. int c;
  274. head = rx_buffer_head;
  275. tail = rx_buffer_tail;
  276. if (head == tail) return -1;
  277. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  278. c = rx_buffer[tail];
  279. rx_buffer_tail = tail;
  280. if (rts_pin) {
  281. int avail;
  282. if (head >= tail) avail = head - tail;
  283. else avail = RX_BUFFER_SIZE + head - tail;
  284. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  285. }
  286. return c;
  287. }
  288. int serial4_peek(void)
  289. {
  290. uint32_t head, tail;
  291. head = rx_buffer_head;
  292. tail = rx_buffer_tail;
  293. if (head == tail) return -1;
  294. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  295. return rx_buffer[tail];
  296. }
  297. void serial4_clear(void)
  298. {
  299. rx_buffer_head = rx_buffer_tail;
  300. if (rts_pin) rts_assert();
  301. }
  302. // status interrupt combines
  303. // Transmit data below watermark UART_S1_TDRE
  304. // Transmit complete UART_S1_TC
  305. // Idle line UART_S1_IDLE
  306. // Receive data above watermark UART_S1_RDRF
  307. // LIN break detect UART_S2_LBKDIF
  308. // RxD pin active edge UART_S2_RXEDGIF
  309. void uart3_status_isr(void)
  310. {
  311. uint32_t head, tail, n;
  312. uint8_t c;
  313. if (UART3_S1 & UART_S1_RDRF) {
  314. if (use9Bits && (UART3_C3 & 0x80)) {
  315. n = UART3_D | 0x100;
  316. } else {
  317. n = UART3_D;
  318. }
  319. head = rx_buffer_head + 1;
  320. if (head >= RX_BUFFER_SIZE) head = 0;
  321. if (head != rx_buffer_tail) {
  322. rx_buffer[head] = n;
  323. rx_buffer_head = head;
  324. }
  325. if (rts_pin) {
  326. int avail;
  327. tail = tx_buffer_tail;
  328. if (head >= tail) avail = head - tail;
  329. else avail = RX_BUFFER_SIZE + head - tail;
  330. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  331. }
  332. }
  333. c = UART3_C2;
  334. if ((c & UART_C2_TIE) && (UART3_S1 & UART_S1_TDRE)) {
  335. head = tx_buffer_head;
  336. tail = tx_buffer_tail;
  337. if (head == tail) {
  338. UART3_C2 = C2_TX_COMPLETING;
  339. } else {
  340. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  341. n = tx_buffer[tail];
  342. if (use9Bits) UART3_C3 = (UART3_C3 & ~0x40) | ((n & 0x100) >> 2);
  343. UART3_D = n;
  344. tx_buffer_tail = tail;
  345. }
  346. }
  347. if ((c & UART_C2_TCIE) && (UART3_S1 & UART_S1_TC)) {
  348. transmitting = 0;
  349. if (transmit_pin) transmit_deassert();
  350. UART3_C2 = C2_TX_INACTIVE;
  351. }
  352. }
  353. #endif // HAS_KINETISK_UART3