You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

analog.c 15KB

11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
11 vuotta sitten
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. //#include "HardwareSerial.h"
  32. static uint8_t calibrating;
  33. static uint8_t analog_right_shift = 0;
  34. static uint8_t analog_config_bits = 10;
  35. static uint8_t analog_num_average = 4;
  36. static uint8_t analog_reference_internal = 0;
  37. // the alternate clock is connected to OSCERCLK (16 MHz).
  38. // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
  39. // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
  40. #if F_BUS == 60000000
  41. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz
  42. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  43. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  44. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  45. #elif F_BUS == 56000000
  46. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz
  47. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  48. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  49. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  50. #elif F_BUS == 48000000
  51. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  52. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  53. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  54. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz
  55. #elif F_BUS == 40000000
  56. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  57. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  58. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  59. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz
  60. #elif F_BUS == 36000000
  61. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz
  62. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  63. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  64. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  65. #elif F_BUS == 24000000
  66. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  67. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  68. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  69. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz
  70. #elif F_BUS == 16000000
  71. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  72. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  73. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  74. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 16 MHz
  75. #elif F_BUS == 8000000
  76. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  77. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  78. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  79. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  80. #elif F_BUS == 4000000
  81. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  82. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  83. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  84. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  85. #elif F_BUS == 2000000
  86. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  87. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  88. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  89. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  90. #else
  91. #error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz"
  92. #endif
  93. void analog_init(void)
  94. {
  95. uint32_t num;
  96. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  97. VREF_TRM = 0x60;
  98. VREF_SC = 0xE1; // enable 1.2 volt ref
  99. #endif
  100. if (analog_config_bits == 8) {
  101. ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  102. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  103. #if defined(__MK20DX256__)
  104. ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  105. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  106. #endif
  107. } else if (analog_config_bits == 10) {
  108. ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  109. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  110. #if defined(__MK20DX256__)
  111. ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  112. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  113. #endif
  114. } else if (analog_config_bits == 12) {
  115. ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  116. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  117. #if defined(__MK20DX256__)
  118. ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  119. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  120. #endif
  121. } else {
  122. ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  123. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  124. #if defined(__MK20DX256__)
  125. ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  126. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  127. #endif
  128. }
  129. #if defined(__MK20DX128__)
  130. if (analog_reference_internal) {
  131. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  132. } else {
  133. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  134. }
  135. #elif defined(__MK20DX256__)
  136. if (analog_reference_internal) {
  137. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  138. ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  139. } else {
  140. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  141. ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  142. }
  143. #elif defined(__MKL26Z64__)
  144. if (analog_reference_internal) {
  145. ADC0_SC2 = ADC_SC2_REFSEL(0); // external AREF
  146. } else {
  147. ADC0_SC2 = ADC_SC2_REFSEL(1); // vcc
  148. }
  149. #endif
  150. num = analog_num_average;
  151. if (num <= 1) {
  152. ADC0_SC3 = ADC_SC3_CAL; // begin cal
  153. #if defined(__MK20DX256__)
  154. ADC1_SC3 = ADC_SC3_CAL; // begin cal
  155. #endif
  156. } else if (num <= 4) {
  157. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  158. #if defined(__MK20DX256__)
  159. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  160. #endif
  161. } else if (num <= 8) {
  162. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  163. #if defined(__MK20DX256__)
  164. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  165. #endif
  166. } else if (num <= 16) {
  167. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  168. #if defined(__MK20DX256__)
  169. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  170. #endif
  171. } else {
  172. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  173. #if defined(__MK20DX256__)
  174. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  175. #endif
  176. }
  177. calibrating = 1;
  178. }
  179. static void wait_for_cal(void)
  180. {
  181. uint16_t sum;
  182. //serial_print("wait_for_cal\n");
  183. #if defined(__MK20DX128__)
  184. while (ADC0_SC3 & ADC_SC3_CAL) {
  185. // wait
  186. }
  187. #elif defined(__MK20DX256__)
  188. while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
  189. // wait
  190. }
  191. #endif
  192. __disable_irq();
  193. if (calibrating) {
  194. //serial_print("\n");
  195. sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
  196. sum = (sum / 2) | 0x8000;
  197. ADC0_PG = sum;
  198. //serial_print("ADC0_PG = ");
  199. //serial_phex16(sum);
  200. //serial_print("\n");
  201. sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
  202. sum = (sum / 2) | 0x8000;
  203. ADC0_MG = sum;
  204. //serial_print("ADC0_MG = ");
  205. //serial_phex16(sum);
  206. //serial_print("\n");
  207. #if defined(__MK20DX256__)
  208. sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
  209. sum = (sum / 2) | 0x8000;
  210. ADC1_PG = sum;
  211. sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
  212. sum = (sum / 2) | 0x8000;
  213. ADC1_MG = sum;
  214. #endif
  215. calibrating = 0;
  216. }
  217. __enable_irq();
  218. }
  219. // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
  220. // VREFH/VREFL - connected as the primary reference option
  221. // 1.2 V VREF_OUT - connected as the VALT reference option
  222. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  223. #define DEFAULT 0
  224. #define INTERNAL 2
  225. #define INTERNAL1V2 2
  226. #define INTERNAL1V1 2
  227. #define EXTERNAL 0
  228. #elif defined(__MKL26Z64__)
  229. #define DEFAULT 0
  230. #define INTERNAL 0
  231. #define EXTERNAL 1
  232. #endif
  233. void analogReference(uint8_t type)
  234. {
  235. if (type) {
  236. // internal reference requested
  237. if (!analog_reference_internal) {
  238. analog_reference_internal = 1;
  239. if (calibrating) {
  240. ADC0_SC3 = 0; // cancel cal
  241. #if defined(__MK20DX256__)
  242. ADC1_SC3 = 0; // cancel cal
  243. #endif
  244. }
  245. analog_init();
  246. }
  247. } else {
  248. // vcc or external reference requested
  249. if (analog_reference_internal) {
  250. analog_reference_internal = 0;
  251. if (calibrating) {
  252. ADC0_SC3 = 0; // cancel cal
  253. #if defined(__MK20DX256__)
  254. ADC1_SC3 = 0; // cancel cal
  255. #endif
  256. }
  257. analog_init();
  258. }
  259. }
  260. }
  261. void analogReadRes(unsigned int bits)
  262. {
  263. unsigned int config;
  264. if (bits >= 13) {
  265. if (bits > 16) bits = 16;
  266. config = 16;
  267. } else if (bits >= 11) {
  268. config = 12;
  269. } else if (bits >= 9) {
  270. config = 10;
  271. } else {
  272. config = 8;
  273. }
  274. analog_right_shift = config - bits;
  275. if (config != analog_config_bits) {
  276. analog_config_bits = config;
  277. if (calibrating) ADC0_SC3 = 0; // cancel cal
  278. analog_init();
  279. }
  280. }
  281. void analogReadAveraging(unsigned int num)
  282. {
  283. if (calibrating) wait_for_cal();
  284. if (num <= 1) {
  285. num = 0;
  286. ADC0_SC3 = 0;
  287. } else if (num <= 4) {
  288. num = 4;
  289. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  290. } else if (num <= 8) {
  291. num = 8;
  292. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  293. } else if (num <= 16) {
  294. num = 16;
  295. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  296. } else {
  297. num = 32;
  298. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  299. }
  300. analog_num_average = num;
  301. }
  302. // The SC1A register is used for both software and hardware trigger modes of operation.
  303. #if defined(__MK20DX128__)
  304. static const uint8_t channel2sc1a[] = {
  305. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  306. 0, 19, 3, 21, 26, 22, 23
  307. };
  308. #elif defined(__MK20DX256__)
  309. static const uint8_t channel2sc1a[] = {
  310. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  311. 0, 19, 3, 19+128, 26, 18+128, 23,
  312. 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
  313. // A15 26 E1 ADC1_SE5a 5+64
  314. // A16 27 C9 ADC1_SE5b 5
  315. // A17 28 C8 ADC1_SE4b 4
  316. // A18 29 C10 ADC1_SE6b 6
  317. // A19 30 C11 ADC1_SE7b 7
  318. // A20 31 E0 ADC1_SE4a 4+64
  319. };
  320. #elif defined(__MKL26Z64__)
  321. static const uint8_t channel2sc1a[] = {
  322. 5, 14, 8, 9, 13, 12, 6, 7, 15, 11,
  323. 0, 4+64, 23, 26, 27
  324. };
  325. #endif
  326. // TODO: perhaps this should store the NVIC priority, so it works recursively?
  327. static volatile uint8_t analogReadBusyADC0 = 0;
  328. #if defined(__MK20DX256__)
  329. static volatile uint8_t analogReadBusyADC1 = 0;
  330. #endif
  331. int analogRead(uint8_t pin)
  332. {
  333. int result;
  334. uint8_t index, channel;
  335. //serial_phex(pin);
  336. //serial_print(" ");
  337. #if defined(__MK20DX128__)
  338. if (pin <= 13) {
  339. index = pin; // 0-13 refer to A0-A13
  340. } else if (pin <= 23) {
  341. index = pin - 14; // 14-23 are A0-A9
  342. } else if (pin >= 34 && pin <= 40) {
  343. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  344. // 39 is vref, 40 is unused analog pin
  345. } else {
  346. return 0;
  347. }
  348. #elif defined(__MK20DX256__)
  349. if (pin <= 13) {
  350. index = pin; // 0-13 refer to A0-A13
  351. } else if (pin <= 23) {
  352. index = pin - 14; // 14-23 are A0-A9
  353. } else if (pin >= 26 && pin <= 31) {
  354. index = pin - 9; // 26-31 are A15-A20
  355. } else if (pin >= 34 && pin <= 40) {
  356. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  357. // 39 is vref, 40 is A14
  358. } else {
  359. return 0;
  360. }
  361. #elif defined(__MKL26Z64__)
  362. if (pin <= 12) {
  363. index = pin; // 0-12 refer to A0-A12
  364. } else if (pin >= 14 && pin <= 26) {
  365. index = pin - 14; // 14-26 are A0-A12
  366. } else if (pin >= 38 && pin <= 39) {
  367. index = pin - 25; // 38=temperature
  368. // 39=bandgap ref (PMC_REGSC |= PMC_REGSC_BGBE)
  369. } else {
  370. return 0;
  371. }
  372. #endif
  373. //serial_phex(index);
  374. //serial_print(" ");
  375. channel = channel2sc1a[index];
  376. //serial_phex(channel);
  377. //serial_print(" ");
  378. //serial_print("analogRead");
  379. //return 0;
  380. if (calibrating) wait_for_cal();
  381. //pin = 5; // PTD1/SE5b, pin 14, analog 0
  382. #if defined(__MK20DX256__)
  383. if (channel & 0x80) goto beginADC1;
  384. #endif
  385. __disable_irq();
  386. startADC0:
  387. //serial_print("startADC0\n");
  388. #if defined(__MKL26Z64__)
  389. if (channel & 0x40) {
  390. ADC0_CFG2 &= ~ADC_CFG2_MUXSEL;
  391. channel &= 0x3F;
  392. } else {
  393. ADC0_CFG2 |= ADC_CFG2_MUXSEL;
  394. }
  395. #endif
  396. ADC0_SC1A = channel;
  397. analogReadBusyADC0 = 1;
  398. __enable_irq();
  399. while (1) {
  400. __disable_irq();
  401. if ((ADC0_SC1A & ADC_SC1_COCO)) {
  402. result = ADC0_RA;
  403. analogReadBusyADC0 = 0;
  404. __enable_irq();
  405. result >>= analog_right_shift;
  406. return result;
  407. }
  408. // detect if analogRead was used from an interrupt
  409. // if so, our analogRead got canceled, so it must
  410. // be restarted.
  411. if (!analogReadBusyADC0) goto startADC0;
  412. __enable_irq();
  413. yield();
  414. }
  415. #if defined(__MK20DX256__)
  416. beginADC1:
  417. __disable_irq();
  418. startADC1:
  419. //serial_print("startADC0\n");
  420. // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
  421. if (channel & 0x40) {
  422. ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
  423. } else {
  424. ADC1_CFG2 |= ADC_CFG2_MUXSEL;
  425. }
  426. ADC1_SC1A = channel & 0x3F;
  427. analogReadBusyADC1 = 1;
  428. __enable_irq();
  429. while (1) {
  430. __disable_irq();
  431. if ((ADC1_SC1A & ADC_SC1_COCO)) {
  432. result = ADC1_RA;
  433. analogReadBusyADC1 = 0;
  434. __enable_irq();
  435. result >>= analog_right_shift;
  436. return result;
  437. }
  438. // detect if analogRead was used from an interrupt
  439. // if so, our analogRead got canceled, so it must
  440. // be restarted.
  441. if (!analogReadBusyADC1) goto startADC1;
  442. __enable_irq();
  443. yield();
  444. }
  445. #endif
  446. }
  447. void analogWriteDAC0(int val)
  448. {
  449. #if defined(__MK20DX256__)
  450. SIM_SCGC2 |= SIM_SCGC2_DAC0;
  451. if (analog_reference_internal) {
  452. DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
  453. } else {
  454. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
  455. }
  456. if (val < 0) val = 0; // TODO: saturate instruction?
  457. else if (val > 4095) val = 4095;
  458. *(int16_t *)&(DAC0_DAT0L) = val;
  459. #elif defined(__MKL26Z64__)
  460. SIM_SCGC6 |= SIM_SCGC6_DAC0;
  461. if (analog_reference_internal == 0) {
  462. // use 3.3V VDDA power as the reference (this is the default)
  463. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS | DAC_C0_DACSWTRG; // 3.3V VDDA
  464. } else {
  465. // use whatever voltage is on the AREF pin
  466. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACSWTRG; // 3.3V VDDA
  467. }
  468. if (val < 0) val = 0;
  469. else if (val > 4095) val = 4095;
  470. *(int16_t *)&(DAC0_DAT0L) = val;
  471. #endif
  472. }