You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 9 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 8 година
пре 8 година
пре 11 година
пре 11 година
пре 8 година
пре 8 година
пре 8 година
пре 8 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. #if defined(KINETISK)
  86. static uint8_t rx_pin_num = 9;
  87. static uint8_t tx_pin_num = 10;
  88. #endif
  89. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  90. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  91. #ifdef HAS_KINETISK_UART1_FIFO
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  93. #else
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  95. #endif
  96. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  97. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  98. #define C2_TX_INACTIVE C2_ENABLE
  99. void serial2_begin(uint32_t divisor)
  100. {
  101. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  102. rx_buffer_head = 0;
  103. rx_buffer_tail = 0;
  104. tx_buffer_head = 0;
  105. tx_buffer_tail = 0;
  106. transmitting = 0;
  107. #if defined(KINETISK)
  108. switch (rx_pin_num) {
  109. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  110. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. }
  112. switch (tx_pin_num) {
  113. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. }
  116. #elif defined(KINETISL)
  117. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  118. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  119. #endif
  120. #if defined(HAS_KINETISK_UART1)
  121. UART1_BDH = (divisor >> 13) & 0x1F;
  122. UART1_BDL = (divisor >> 5) & 0xFF;
  123. UART1_C4 = divisor & 0x1F;
  124. #ifdef HAS_KINETISK_UART1_FIFO
  125. UART1_C1 = UART_C1_ILT;
  126. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  127. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  128. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  129. #else
  130. UART1_C1 = 0;
  131. UART1_PFIFO = 0;
  132. #endif
  133. #elif defined(HAS_KINETISL_UART1)
  134. UART1_BDH = (divisor >> 8) & 0x1F;
  135. UART1_BDL = divisor & 0xFF;
  136. UART1_C1 = 0;
  137. #endif
  138. UART1_C2 = C2_TX_INACTIVE;
  139. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  140. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  141. }
  142. void serial2_format(uint32_t format)
  143. {
  144. uint8_t c;
  145. c = UART1_C1;
  146. c = (c & ~0x13) | (format & 0x03); // configure parity
  147. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  148. UART1_C1 = c;
  149. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  150. c = UART1_S2 & ~0x10;
  151. if (format & 0x10) c |= 0x10; // rx invert
  152. UART1_S2 = c;
  153. c = UART1_C3 & ~0x10;
  154. if (format & 0x20) c |= 0x10; // tx invert
  155. UART1_C3 = c;
  156. #ifdef SERIAL_9BIT_SUPPORT
  157. c = UART1_C4 & 0x1F;
  158. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  159. UART1_C4 = c;
  160. use9Bits = format & 0x80;
  161. #endif
  162. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  163. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  164. if ( format & 0x100) {
  165. uint8_t bdl = UART1_BDL;
  166. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  167. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  168. }
  169. #endif
  170. }
  171. void serial2_end(void)
  172. {
  173. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  174. while (transmitting) yield(); // wait for buffered data to send
  175. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  176. UART1_C2 = 0;
  177. #if defined(KINETISK)
  178. switch (rx_pin_num) {
  179. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  180. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  181. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  182. #endif
  183. }
  184. switch (tx_pin_num & 127) {
  185. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  186. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  187. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  188. #endif
  189. }
  190. #elif defined(KINETISL)
  191. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  192. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  193. #endif
  194. rx_buffer_head = 0;
  195. rx_buffer_tail = 0;
  196. if (rts_pin) rts_deassert();
  197. }
  198. void serial2_set_transmit_pin(uint8_t pin)
  199. {
  200. while (transmitting) ;
  201. pinMode(pin, OUTPUT);
  202. digitalWrite(pin, LOW);
  203. transmit_pin = portOutputRegister(pin);
  204. #if defined(KINETISL)
  205. transmit_mask = digitalPinToBitMask(pin);
  206. #endif
  207. }
  208. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  209. {
  210. #if defined(KINETISK)
  211. uint32_t cfg;
  212. if (opendrain) pin |= 128;
  213. if (pin == tx_pin_num) return;
  214. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  215. switch (tx_pin_num & 127) {
  216. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  217. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  218. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  219. #endif
  220. }
  221. if (opendrain) {
  222. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  223. } else {
  224. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  225. }
  226. switch (pin & 127) {
  227. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  228. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  229. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  230. #endif
  231. }
  232. }
  233. tx_pin_num = pin;
  234. #endif
  235. }
  236. void serial2_set_rx(uint8_t pin)
  237. {
  238. #if defined(KINETISK)
  239. if (pin == rx_pin_num) return;
  240. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  241. switch (rx_pin_num) {
  242. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  243. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  244. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  245. #endif
  246. }
  247. switch (pin) {
  248. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  249. #if !(defined(__MK64FX512__) || defined(__MK66FX1M0__)) // not on T3.5 or T3.6
  250. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  251. #endif
  252. }
  253. }
  254. rx_pin_num = pin;
  255. #endif
  256. }
  257. int serial2_set_rts(uint8_t pin)
  258. {
  259. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  260. if (pin < CORE_NUM_DIGITAL) {
  261. rts_pin = portOutputRegister(pin);
  262. #if defined(KINETISL)
  263. rts_mask = digitalPinToBitMask(pin);
  264. #endif
  265. pinMode(pin, OUTPUT);
  266. rts_assert();
  267. } else {
  268. rts_pin = NULL;
  269. return 0;
  270. }
  271. /*
  272. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  273. if (pin == 22) {
  274. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  275. } else {
  276. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  277. return 0;
  278. }
  279. UART1_MODEM |= UART_MODEM_RXRTSE;
  280. */
  281. return 1;
  282. }
  283. int serial2_set_cts(uint8_t pin)
  284. {
  285. #if defined(KINETISK)
  286. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  287. if (pin == 23) {
  288. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  289. } else {
  290. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  291. return 0;
  292. }
  293. UART1_MODEM |= UART_MODEM_TXCTSE;
  294. return 1;
  295. #else
  296. return 0;
  297. #endif
  298. }
  299. void serial2_putchar(uint32_t c)
  300. {
  301. uint32_t head, n;
  302. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  303. if (transmit_pin) transmit_assert();
  304. head = tx_buffer_head;
  305. if (++head >= TX_BUFFER_SIZE) head = 0;
  306. while (tx_buffer_tail == head) {
  307. int priority = nvic_execution_priority();
  308. if (priority <= IRQ_PRIORITY) {
  309. if ((UART1_S1 & UART_S1_TDRE)) {
  310. uint32_t tail = tx_buffer_tail;
  311. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  312. n = tx_buffer[tail];
  313. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  314. UART1_D = n;
  315. tx_buffer_tail = tail;
  316. }
  317. } else if (priority >= 256) {
  318. yield(); // wait
  319. }
  320. }
  321. tx_buffer[head] = c;
  322. transmitting = 1;
  323. tx_buffer_head = head;
  324. UART1_C2 = C2_TX_ACTIVE;
  325. }
  326. #ifdef HAS_KINETISK_UART1_FIFO
  327. void serial2_write(const void *buf, unsigned int count)
  328. {
  329. const uint8_t *p = (const uint8_t *)buf;
  330. const uint8_t *end = p + count;
  331. uint32_t head, n;
  332. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  333. if (transmit_pin) transmit_assert();
  334. while (p < end) {
  335. head = tx_buffer_head;
  336. if (++head >= TX_BUFFER_SIZE) head = 0;
  337. if (tx_buffer_tail == head) {
  338. UART1_C2 = C2_TX_ACTIVE;
  339. do {
  340. int priority = nvic_execution_priority();
  341. if (priority <= IRQ_PRIORITY) {
  342. if ((UART1_S1 & UART_S1_TDRE)) {
  343. uint32_t tail = tx_buffer_tail;
  344. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  345. n = tx_buffer[tail];
  346. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  347. UART1_D = n;
  348. tx_buffer_tail = tail;
  349. }
  350. } else if (priority >= 256) {
  351. yield();
  352. }
  353. } while (tx_buffer_tail == head);
  354. }
  355. tx_buffer[head] = *p++;
  356. transmitting = 1;
  357. tx_buffer_head = head;
  358. }
  359. UART1_C2 = C2_TX_ACTIVE;
  360. }
  361. #else
  362. void serial2_write(const void *buf, unsigned int count)
  363. {
  364. const uint8_t *p = (const uint8_t *)buf;
  365. while (count-- > 0) serial2_putchar(*p++);
  366. }
  367. #endif
  368. void serial2_flush(void)
  369. {
  370. while (transmitting) yield(); // wait
  371. }
  372. int serial2_write_buffer_free(void)
  373. {
  374. uint32_t head, tail;
  375. head = tx_buffer_head;
  376. tail = tx_buffer_tail;
  377. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  378. return tail - head - 1;
  379. }
  380. int serial2_available(void)
  381. {
  382. uint32_t head, tail;
  383. head = rx_buffer_head;
  384. tail = rx_buffer_tail;
  385. if (head >= tail) return head - tail;
  386. return RX_BUFFER_SIZE + head - tail;
  387. }
  388. int serial2_getchar(void)
  389. {
  390. uint32_t head, tail;
  391. int c;
  392. head = rx_buffer_head;
  393. tail = rx_buffer_tail;
  394. if (head == tail) return -1;
  395. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  396. c = rx_buffer[tail];
  397. rx_buffer_tail = tail;
  398. if (rts_pin) {
  399. int avail;
  400. if (head >= tail) avail = head - tail;
  401. else avail = RX_BUFFER_SIZE + head - tail;
  402. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  403. }
  404. return c;
  405. }
  406. int serial2_peek(void)
  407. {
  408. uint32_t head, tail;
  409. head = rx_buffer_head;
  410. tail = rx_buffer_tail;
  411. if (head == tail) return -1;
  412. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  413. return rx_buffer[tail];
  414. }
  415. void serial2_clear(void)
  416. {
  417. #ifdef HAS_KINETISK_UART1_FIFO
  418. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  419. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  420. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  421. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  422. #endif
  423. rx_buffer_head = rx_buffer_tail;
  424. if (rts_pin) rts_assert();
  425. }
  426. // status interrupt combines
  427. // Transmit data below watermark UART_S1_TDRE
  428. // Transmit complete UART_S1_TC
  429. // Idle line UART_S1_IDLE
  430. // Receive data above watermark UART_S1_RDRF
  431. // LIN break detect UART_S2_LBKDIF
  432. // RxD pin active edge UART_S2_RXEDGIF
  433. void uart1_status_isr(void)
  434. {
  435. uint32_t head, tail, n;
  436. uint8_t c;
  437. #ifdef HAS_KINETISK_UART1_FIFO
  438. uint32_t newhead;
  439. uint8_t avail;
  440. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  441. __disable_irq();
  442. avail = UART1_RCFIFO;
  443. if (avail == 0) {
  444. // The only way to clear the IDLE interrupt flag is
  445. // to read the data register. But reading with no
  446. // data causes a FIFO underrun, which causes the
  447. // FIFO to return corrupted data. If anyone from
  448. // Freescale reads this, what a poor design! There
  449. // write should be a write-1-to-clear for IDLE.
  450. c = UART1_D;
  451. // flushing the fifo recovers from the underrun,
  452. // but there's a possible race condition where a
  453. // new character could be received between reading
  454. // RCFIFO == 0 and flushing the FIFO. To minimize
  455. // the chance, interrupts are disabled so a higher
  456. // priority interrupt (hopefully) doesn't delay.
  457. // TODO: change this to disabling the IDLE interrupt
  458. // which won't be simple, since we already manage
  459. // which transmit interrupts are enabled.
  460. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  461. __enable_irq();
  462. } else {
  463. __enable_irq();
  464. head = rx_buffer_head;
  465. tail = rx_buffer_tail;
  466. do {
  467. if (use9Bits && (UART1_C3 & 0x80)) {
  468. n = UART1_D | 0x100;
  469. } else {
  470. n = UART1_D;
  471. }
  472. newhead = head + 1;
  473. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  474. if (newhead != tail) {
  475. head = newhead;
  476. rx_buffer[head] = n;
  477. }
  478. } while (--avail > 0);
  479. rx_buffer_head = head;
  480. if (rts_pin) {
  481. int avail;
  482. if (head >= tail) avail = head - tail;
  483. else avail = RX_BUFFER_SIZE + head - tail;
  484. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  485. }
  486. }
  487. }
  488. c = UART1_C2;
  489. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  490. head = tx_buffer_head;
  491. tail = tx_buffer_tail;
  492. do {
  493. if (tail == head) break;
  494. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  495. avail = UART1_S1;
  496. n = tx_buffer[tail];
  497. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  498. UART1_D = n;
  499. } while (UART1_TCFIFO < 8);
  500. tx_buffer_tail = tail;
  501. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  502. }
  503. #else
  504. if (UART1_S1 & UART_S1_RDRF) {
  505. n = UART1_D;
  506. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  507. head = rx_buffer_head + 1;
  508. if (head >= RX_BUFFER_SIZE) head = 0;
  509. if (head != rx_buffer_tail) {
  510. rx_buffer[head] = n;
  511. rx_buffer_head = head;
  512. }
  513. }
  514. c = UART1_C2;
  515. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  516. head = tx_buffer_head;
  517. tail = tx_buffer_tail;
  518. if (head == tail) {
  519. UART1_C2 = C2_TX_COMPLETING;
  520. } else {
  521. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  522. n = tx_buffer[tail];
  523. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  524. UART1_D = n;
  525. tx_buffer_tail = tail;
  526. }
  527. }
  528. #endif
  529. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  530. transmitting = 0;
  531. if (transmit_pin) transmit_deassert();
  532. UART1_C2 = C2_TX_INACTIVE;
  533. }
  534. }