You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. //#include "HardwareSerial.h"
  32. static uint8_t calibrating;
  33. static uint8_t analog_right_shift = 0;
  34. static uint8_t analog_config_bits = 10;
  35. static uint8_t analog_num_average = 4;
  36. static uint8_t analog_reference_internal = 0;
  37. // the alternate clock is connected to OSCERCLK (16 MHz).
  38. // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
  39. // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
  40. #if F_BUS == 48000000
  41. #define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1)
  42. #define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1)
  43. #define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1)
  44. #elif F_BUS == 24000000
  45. #define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(0)
  46. #define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0)
  47. #define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0)
  48. #else
  49. #error
  50. #endif
  51. void analog_init(void)
  52. {
  53. uint32_t num;
  54. VREF_TRM = 0x60;
  55. VREF_SC = 0xE1; // enable 1.2 volt ref
  56. if (analog_config_bits == 8) {
  57. ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
  58. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  59. #if defined(__MK20DX256__)
  60. ADC1_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
  61. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  62. #endif
  63. } else if (analog_config_bits == 10) {
  64. ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  65. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  66. #if defined(__MK20DX256__)
  67. ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  68. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  69. #endif
  70. } else if (analog_config_bits == 12) {
  71. ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  72. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  73. #if defined(__MK20DX256__)
  74. ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  75. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  76. #endif
  77. } else {
  78. ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  79. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  80. #if defined(__MK20DX256__)
  81. ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  82. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  83. #endif
  84. }
  85. if (analog_reference_internal) {
  86. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  87. #if defined(__MK20DX256__)
  88. ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  89. #endif
  90. } else {
  91. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  92. #if defined(__MK20DX256__)
  93. ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  94. #endif
  95. }
  96. num = analog_num_average;
  97. if (num <= 1) {
  98. ADC0_SC3 = ADC_SC3_CAL; // begin cal
  99. #if defined(__MK20DX256__)
  100. ADC1_SC3 = ADC_SC3_CAL; // begin cal
  101. #endif
  102. } else if (num <= 4) {
  103. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  104. #if defined(__MK20DX256__)
  105. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  106. #endif
  107. } else if (num <= 8) {
  108. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  109. #if defined(__MK20DX256__)
  110. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  111. #endif
  112. } else if (num <= 16) {
  113. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  114. #if defined(__MK20DX256__)
  115. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  116. #endif
  117. } else {
  118. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  119. #if defined(__MK20DX256__)
  120. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  121. #endif
  122. }
  123. calibrating = 1;
  124. }
  125. static void wait_for_cal(void)
  126. {
  127. uint16_t sum;
  128. //serial_print("wait_for_cal\n");
  129. #if defined(__MK20DX128__)
  130. while (ADC0_SC3 & ADC_SC3_CAL) {
  131. // wait
  132. }
  133. #elif defined(__MK20DX256__)
  134. while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
  135. // wait
  136. }
  137. #endif
  138. __disable_irq();
  139. if (calibrating) {
  140. //serial_print("\n");
  141. sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
  142. sum = (sum / 2) | 0x8000;
  143. ADC0_PG = sum;
  144. //serial_print("ADC0_PG = ");
  145. //serial_phex16(sum);
  146. //serial_print("\n");
  147. sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
  148. sum = (sum / 2) | 0x8000;
  149. ADC0_MG = sum;
  150. //serial_print("ADC0_MG = ");
  151. //serial_phex16(sum);
  152. //serial_print("\n");
  153. #if defined(__MK20DX256__)
  154. sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
  155. sum = (sum / 2) | 0x8000;
  156. ADC1_PG = sum;
  157. sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
  158. sum = (sum / 2) | 0x8000;
  159. ADC1_MG = sum;
  160. #endif
  161. calibrating = 0;
  162. }
  163. __enable_irq();
  164. }
  165. // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
  166. // VREFH/VREFL - connected as the primary reference option
  167. // 1.2 V VREF_OUT - connected as the VALT reference option
  168. #define DEFAULT 0
  169. #define INTERNAL 2
  170. #define INTERNAL1V2 2
  171. #define INTERNAL1V1 2
  172. #define EXTERNAL 0
  173. void analogReference(uint8_t type)
  174. {
  175. if (type) {
  176. // internal reference requested
  177. if (!analog_reference_internal) {
  178. analog_reference_internal = 1;
  179. if (calibrating) {
  180. ADC0_SC3 = 0; // cancel cal
  181. #if defined(__MK20DX256__)
  182. ADC1_SC3 = 0; // cancel cal
  183. #endif
  184. }
  185. analog_init();
  186. }
  187. } else {
  188. // vcc or external reference requested
  189. if (analog_reference_internal) {
  190. analog_reference_internal = 0;
  191. if (calibrating) {
  192. ADC0_SC3 = 0; // cancel cal
  193. #if defined(__MK20DX256__)
  194. ADC1_SC3 = 0; // cancel cal
  195. #endif
  196. }
  197. analog_init();
  198. }
  199. }
  200. }
  201. void analogReadRes(unsigned int bits)
  202. {
  203. unsigned int config;
  204. if (bits >= 13) {
  205. if (bits > 16) bits = 16;
  206. config = 16;
  207. } else if (bits >= 11) {
  208. config = 12;
  209. } else if (bits >= 9) {
  210. config = 10;
  211. } else {
  212. config = 8;
  213. }
  214. analog_right_shift = config - bits;
  215. if (config != analog_config_bits) {
  216. analog_config_bits = config;
  217. if (calibrating) ADC0_SC3 = 0; // cancel cal
  218. analog_init();
  219. }
  220. }
  221. void analogReadAveraging(unsigned int num)
  222. {
  223. if (calibrating) wait_for_cal();
  224. if (num <= 1) {
  225. num = 0;
  226. ADC0_SC3 = 0;
  227. } else if (num <= 4) {
  228. num = 4;
  229. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  230. } else if (num <= 8) {
  231. num = 8;
  232. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  233. } else if (num <= 16) {
  234. num = 16;
  235. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  236. } else {
  237. num = 32;
  238. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  239. }
  240. analog_num_average = num;
  241. }
  242. // The SC1A register is used for both software and hardware trigger modes of operation.
  243. #if defined(__MK20DX128__)
  244. static const uint8_t channel2sc1a[] = {
  245. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  246. 0, 19, 3, 21, 26, 22, 23
  247. };
  248. #elif defined(__MK20DX256__)
  249. static const uint8_t channel2sc1a[] = {
  250. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  251. 0, 19, 3, 19+128, 26, 22, 23,
  252. 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
  253. // A15 26 E1 ADC1_SE5a 5+64
  254. // A16 27 C9 ADC1_SE5b 5
  255. // A17 28 C8 ADC1_SE4b 4
  256. // A18 29 C10 ADC1_SE6b 6
  257. // A19 30 C11 ADC1_SE7b 7
  258. // A20 31 E0 ADC1_SE4a 4+64
  259. };
  260. #endif
  261. // TODO: perhaps this should store the NVIC priority, so it works recursively?
  262. static volatile uint8_t analogReadBusyADC0 = 0;
  263. #if defined(__MK20DX256__)
  264. static volatile uint8_t analogReadBusyADC1 = 0;
  265. #endif
  266. int analogRead(uint8_t pin)
  267. {
  268. int result;
  269. uint8_t index, channel;
  270. //serial_phex(pin);
  271. //serial_print(" ");
  272. if (pin <= 13) {
  273. index = pin; // 0-13 refer to A0-A13
  274. } else if (pin <= 23) {
  275. index = pin - 14; // 14-23 are A0-A9
  276. #if defined(__MK20DX256__)
  277. } else if (pin >= 26 && pin <= 31) {
  278. index = pin - 9; // 26-31 are A15-A20
  279. #endif
  280. } else if (pin >= 34 && pin <= 40) {
  281. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  282. // 39 is vref, 40 is unused (A14 on Teensy 3.1)
  283. } else {
  284. return 0; // all others are invalid
  285. }
  286. //serial_phex(index);
  287. //serial_print(" ");
  288. channel = channel2sc1a[index];
  289. //serial_phex(channel);
  290. //serial_print(" ");
  291. //serial_print("analogRead");
  292. //return 0;
  293. if (calibrating) wait_for_cal();
  294. //pin = 5; // PTD1/SE5b, pin 14, analog 0
  295. #if defined(__MK20DX256__)
  296. if (channel & 0x80) goto beginADC1;
  297. #endif
  298. __disable_irq();
  299. startADC0:
  300. //serial_print("startADC0\n");
  301. ADC0_SC1A = channel;
  302. analogReadBusyADC0 = 1;
  303. __enable_irq();
  304. while (1) {
  305. __disable_irq();
  306. if ((ADC0_SC1A & ADC_SC1_COCO)) {
  307. result = ADC0_RA;
  308. analogReadBusyADC0 = 0;
  309. __enable_irq();
  310. result >>= analog_right_shift;
  311. return result;
  312. }
  313. // detect if analogRead was used from an interrupt
  314. // if so, our analogRead got canceled, so it must
  315. // be restarted.
  316. if (!analogReadBusyADC0) goto startADC0;
  317. __enable_irq();
  318. yield();
  319. }
  320. #if defined(__MK20DX256__)
  321. beginADC1:
  322. __disable_irq();
  323. startADC1:
  324. //serial_print("startADC0\n");
  325. // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
  326. if (channel & 0x40) {
  327. ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
  328. } else {
  329. ADC1_CFG2 |= ADC_CFG2_MUXSEL;
  330. }
  331. ADC1_SC1A = channel & 0x3F;
  332. analogReadBusyADC1 = 1;
  333. __enable_irq();
  334. while (1) {
  335. __disable_irq();
  336. if ((ADC1_SC1A & ADC_SC1_COCO)) {
  337. result = ADC1_RA;
  338. analogReadBusyADC1 = 0;
  339. __enable_irq();
  340. result >>= analog_right_shift;
  341. return result;
  342. }
  343. // detect if analogRead was used from an interrupt
  344. // if so, our analogRead got canceled, so it must
  345. // be restarted.
  346. if (!analogReadBusyADC1) goto startADC1;
  347. __enable_irq();
  348. yield();
  349. }
  350. #endif
  351. }
  352. void analogWriteDAC0(int val)
  353. {
  354. #if defined(__MK20DX256__)
  355. SIM_SCGC2 |= SIM_SCGC2_DAC0;
  356. if (analog_reference_internal) {
  357. DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
  358. } else {
  359. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
  360. }
  361. if (val < 0) val = 0; // TODO: saturate instruction?
  362. else if (val > 4095) val = 4095;
  363. *(int16_t *)&(DAC0_DAT0L) = val;
  364. #endif
  365. }