You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 9 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #include <stddef.h>
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #ifndef SERIAL3_TX_BUFFER_SIZE
  38. #define SERIAL3_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  39. #endif
  40. #ifndef SERIAL3_RX_BUFFER_SIZE
  41. #define SERIAL3_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  42. #endif
  43. #define RTS_HIGH_WATERMARK (SERIAL3_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  44. #define RTS_LOW_WATERMARK (SERIAL3_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  45. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  46. ////////////////////////////////////////////////////////////////
  47. // changes not recommended below this point....
  48. ////////////////////////////////////////////////////////////////
  49. #ifdef SERIAL_9BIT_SUPPORT
  50. static uint8_t use9Bits = 0;
  51. #define BUFTYPE uint16_t
  52. #else
  53. #define BUFTYPE uint8_t
  54. #define use9Bits 0
  55. #endif
  56. static volatile BUFTYPE tx_buffer[SERIAL3_TX_BUFFER_SIZE];
  57. static volatile BUFTYPE rx_buffer[SERIAL3_RX_BUFFER_SIZE];
  58. static volatile BUFTYPE *rx_buffer_storage_ = NULL;
  59. static volatile BUFTYPE *tx_buffer_storage_ = NULL;
  60. static size_t tx_buffer_total_size_ = SERIAL3_TX_BUFFER_SIZE;
  61. static size_t rx_buffer_total_size_ = SERIAL3_RX_BUFFER_SIZE;
  62. static size_t rts_low_watermark_ = RTS_LOW_WATERMARK;
  63. static size_t rts_high_watermark_ = RTS_HIGH_WATERMARK;
  64. static volatile uint8_t transmitting = 0;
  65. #if defined(KINETISK)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. #define transmit_assert() *transmit_pin = 1
  68. #define transmit_deassert() *transmit_pin = 0
  69. static volatile uint8_t *rts_pin=NULL;
  70. #define rts_assert() *rts_pin = 0
  71. #define rts_deassert() *rts_pin = 1
  72. #elif defined(KINETISL)
  73. static volatile uint8_t *transmit_pin=NULL;
  74. static uint8_t transmit_mask=0;
  75. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  76. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  77. static volatile uint8_t *rts_pin=NULL;
  78. static uint8_t rts_mask=0;
  79. #define rts_assert() *(rts_pin+8) = rts_mask;
  80. #define rts_deassert() *(rts_pin+4) = rts_mask;
  81. #endif
  82. #if SERIAL3_TX_BUFFER_SIZE > 65535
  83. static volatile uint32_t tx_buffer_head = 0;
  84. static volatile uint32_t tx_buffer_tail = 0;
  85. #elif SERIAL3_TX_BUFFER_SIZE > 255
  86. static volatile uint16_t tx_buffer_head = 0;
  87. static volatile uint16_t tx_buffer_tail = 0;
  88. #else
  89. static volatile uint8_t tx_buffer_head = 0;
  90. static volatile uint8_t tx_buffer_tail = 0;
  91. #endif
  92. #if SERIAL3_RX_BUFFER_SIZE > 65535
  93. static volatile uint32_t rx_buffer_head = 0;
  94. static volatile uint32_t rx_buffer_tail = 0;
  95. #elif SERIAL3_RX_BUFFER_SIZE > 255
  96. static volatile uint16_t rx_buffer_head = 0;
  97. static volatile uint16_t rx_buffer_tail = 0;
  98. #else
  99. static volatile uint8_t rx_buffer_head = 0;
  100. static volatile uint8_t rx_buffer_tail = 0;
  101. #endif
  102. #if defined(KINETISL)
  103. static uint8_t rx_pin_num = 7;
  104. #endif
  105. static uint8_t tx_pin_num = 8;
  106. #if defined(KINETISL)
  107. static uint8_t half_duplex_mode = 0;
  108. #endif
  109. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  110. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  111. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  112. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  113. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  114. #define C2_TX_INACTIVE C2_ENABLE
  115. // BITBAND Support
  116. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  117. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  118. #define C3_TXDIR_BIT 5
  119. void serial3_begin(uint32_t divisor)
  120. {
  121. SIM_SCGC4 |= SIM_SCGC4_UART2; // turn on clock, TODO: use bitband
  122. rx_buffer_head = 0;
  123. rx_buffer_tail = 0;
  124. tx_buffer_head = 0;
  125. tx_buffer_tail = 0;
  126. transmitting = 0;
  127. #if defined(KINETISK)
  128. CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  129. CORE_PIN8_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  130. #elif defined(KINETISL)
  131. switch (rx_pin_num) {
  132. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  133. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  134. }
  135. switch (tx_pin_num) {
  136. case 8: CORE_PIN8_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  137. case 20: CORE_PIN20_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  138. }
  139. #endif
  140. #if defined(HAS_KINETISK_UART2)
  141. if (divisor < 32) divisor = 32;
  142. UART2_BDH = (divisor >> 13) & 0x1F;
  143. UART2_BDL = (divisor >> 5) & 0xFF;
  144. UART2_C4 = divisor & 0x1F;
  145. UART2_C1 = 0;
  146. UART2_PFIFO = 0;
  147. #elif defined(HAS_KINETISL_UART2)
  148. if (divisor < 1) divisor = 1;
  149. UART2_BDH = (divisor >> 8) & 0x1F;
  150. UART2_BDL = divisor & 0xFF;
  151. UART2_C1 = 0;
  152. #endif
  153. UART2_C2 = C2_TX_INACTIVE;
  154. NVIC_SET_PRIORITY(IRQ_UART2_STATUS, IRQ_PRIORITY);
  155. NVIC_ENABLE_IRQ(IRQ_UART2_STATUS);
  156. }
  157. void serial3_format(uint32_t format)
  158. {
  159. uint8_t c;
  160. c = UART2_C1;
  161. c = (c & ~0x13) | (format & 0x03); // configure parity
  162. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  163. UART2_C1 = c;
  164. if ((format & 0x0F) == 0x04) UART2_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  165. c = UART2_S2 & ~0x10;
  166. if (format & 0x10) c |= 0x10; // rx invert
  167. UART2_S2 = c;
  168. c = UART2_C3 & ~0x10;
  169. if (format & 0x20) c |= 0x10; // tx invert
  170. UART2_C3 = c;
  171. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  172. c = UART2_C4 & 0x1F;
  173. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  174. UART2_C4 = c;
  175. use9Bits = format & 0x80;
  176. #endif
  177. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  178. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  179. if ( format & 0x100) {
  180. uint8_t bdl = UART2_BDL;
  181. UART2_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  182. UART2_BDL = bdl; // Says BDH not acted on until BDL is written
  183. }
  184. #endif
  185. // process request for half duplex.
  186. if ((format & SERIAL_HALF_DUPLEX) != 0) {
  187. c = UART2_C1;
  188. c |= UART_C1_LOOPS | UART_C1_RSRC;
  189. UART2_C1 = c;
  190. // Lets try to make use of bitband address to set the direction for ue...
  191. #if defined(KINETISL)
  192. switch (tx_pin_num) {
  193. case 8: CORE_PIN8_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  194. case 20: CORE_PIN20_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  195. }
  196. half_duplex_mode = 1;
  197. #else
  198. volatile uint32_t *reg = portConfigRegister(tx_pin_num);
  199. *reg = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; // pullup on output pin;
  200. transmit_pin = (uint8_t*)GPIO_BITBAND_PTR(UART2_C3, C3_TXDIR_BIT);
  201. #endif
  202. } else {
  203. #if defined(KINETISL)
  204. half_duplex_mode = 0;
  205. #else
  206. if (transmit_pin == (uint8_t*)GPIO_BITBAND_PTR(UART2_C3, C3_TXDIR_BIT)) transmit_pin = NULL;
  207. #endif
  208. }
  209. }
  210. void serial3_end(void)
  211. {
  212. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return;
  213. while (transmitting) yield(); // wait for buffered data to send
  214. NVIC_DISABLE_IRQ(IRQ_UART2_STATUS);
  215. UART2_C2 = 0;
  216. #if defined(KINETISK)
  217. CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  218. CORE_PIN8_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  219. #elif defined(KINETISL)
  220. switch (rx_pin_num) {
  221. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  222. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  223. }
  224. switch (tx_pin_num & 127) {
  225. case 8: CORE_PIN8_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  226. case 20: CORE_PIN20_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  227. }
  228. #endif
  229. UART2_S1;
  230. UART2_D; // clear leftover error status
  231. rx_buffer_head = 0;
  232. rx_buffer_tail = 0;
  233. if (rts_pin) rts_deassert();
  234. }
  235. void serial3_set_transmit_pin(uint8_t pin)
  236. {
  237. while (transmitting) ;
  238. pinMode(pin, OUTPUT);
  239. digitalWrite(pin, LOW);
  240. transmit_pin = portOutputRegister(pin);
  241. #if defined(KINETISL)
  242. transmit_mask = digitalPinToBitMask(pin);
  243. #endif
  244. }
  245. void serial3_set_tx(uint8_t pin, uint8_t opendrain)
  246. {
  247. uint32_t cfg;
  248. if (opendrain) pin |= 128;
  249. if (pin == tx_pin_num) return;
  250. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  251. switch (tx_pin_num & 127) {
  252. case 8: CORE_PIN8_CONFIG = 0; break; // PTD3
  253. #if defined(KINETISL)
  254. case 20: CORE_PIN20_CONFIG = 0; break; // PTD5
  255. #endif
  256. }
  257. if (opendrain) {
  258. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  259. } else {
  260. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  261. }
  262. switch (pin & 127) {
  263. case 8: CORE_PIN8_CONFIG = cfg | PORT_PCR_MUX(3); break;
  264. #if defined(KINETISL)
  265. case 20: CORE_PIN20_CONFIG = cfg | PORT_PCR_MUX(3); break;
  266. #endif
  267. }
  268. }
  269. tx_pin_num = pin;
  270. }
  271. void serial3_set_rx(uint8_t pin)
  272. {
  273. #if defined(KINETISL)
  274. if (pin == rx_pin_num) return;
  275. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  276. switch (rx_pin_num) {
  277. case 7: CORE_PIN7_CONFIG = 0; break; // PTD2
  278. case 6: CORE_PIN6_CONFIG = 0; break; // PTD4
  279. }
  280. switch (pin) {
  281. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  282. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  283. }
  284. }
  285. rx_pin_num = pin;
  286. #endif
  287. }
  288. int serial3_set_rts(uint8_t pin)
  289. {
  290. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return 0;
  291. if (pin < CORE_NUM_DIGITAL) {
  292. rts_pin = portOutputRegister(pin);
  293. #if defined(KINETISL)
  294. rts_mask = digitalPinToBitMask(pin);
  295. #endif
  296. pinMode(pin, OUTPUT);
  297. rts_assert();
  298. } else {
  299. rts_pin = NULL;
  300. return 0;
  301. }
  302. /*
  303. if (pin == 2) {
  304. CORE_PIN2_CONFIG = PORT_PCR_MUX(3);
  305. } else {
  306. UART2_MODEM &= ~UART_MODEM_RXRTSE;
  307. return 0;
  308. }
  309. UART2_MODEM |= UART_MODEM_RXRTSE;
  310. */
  311. return 1;
  312. }
  313. int serial3_set_cts(uint8_t pin)
  314. {
  315. #if defined(KINETISK)
  316. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return 0;
  317. if (pin == 14) {
  318. CORE_PIN14_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  319. } else {
  320. UART2_MODEM &= ~UART_MODEM_TXCTSE;
  321. return 0;
  322. }
  323. UART2_MODEM |= UART_MODEM_TXCTSE;
  324. return 1;
  325. #else
  326. return 0;
  327. #endif
  328. }
  329. void serial3_putchar(uint32_t c)
  330. {
  331. uint32_t head, n;
  332. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return;
  333. if (transmit_pin) transmit_assert();
  334. #if defined(KINETISL)
  335. if (half_duplex_mode) {
  336. __disable_irq();
  337. volatile uint32_t reg = UART2_C3;
  338. reg |= UART_C3_TXDIR;
  339. UART2_C3 = reg;
  340. __enable_irq();
  341. }
  342. #endif
  343. head = tx_buffer_head;
  344. if (++head >= tx_buffer_total_size_) head = 0;
  345. while (tx_buffer_tail == head) {
  346. int priority = nvic_execution_priority();
  347. if (priority <= IRQ_PRIORITY) {
  348. if ((UART2_S1 & UART_S1_TDRE)) {
  349. uint32_t tail = tx_buffer_tail;
  350. if (++tail >= tx_buffer_total_size_) tail = 0;
  351. if (tail < SERIAL3_TX_BUFFER_SIZE) {
  352. n = tx_buffer[tail];
  353. } else {
  354. n = tx_buffer_storage_[tail-SERIAL3_TX_BUFFER_SIZE];
  355. }
  356. if (use9Bits) UART2_C3 = (UART2_C3 & ~0x40) | ((n & 0x100) >> 2);
  357. UART2_D = n;
  358. tx_buffer_tail = tail;
  359. }
  360. } else if (priority >= 256) {
  361. yield(); // wait
  362. }
  363. }
  364. if (head < SERIAL3_TX_BUFFER_SIZE) {
  365. tx_buffer[head] = c;
  366. } else {
  367. tx_buffer_storage_[head - SERIAL3_TX_BUFFER_SIZE] = c;
  368. }
  369. transmitting = 1;
  370. tx_buffer_head = head;
  371. UART2_C2 = C2_TX_ACTIVE;
  372. }
  373. void serial3_write(const void *buf, unsigned int count)
  374. {
  375. const uint8_t *p = (const uint8_t *)buf;
  376. while (count-- > 0) serial3_putchar(*p++);
  377. }
  378. void serial3_flush(void)
  379. {
  380. while (transmitting) yield(); // wait
  381. }
  382. int serial3_write_buffer_free(void)
  383. {
  384. uint32_t head, tail;
  385. head = tx_buffer_head;
  386. tail = tx_buffer_tail;
  387. if (head >= tail) return tx_buffer_total_size_ - 1 - head + tail;
  388. return tail - head - 1;
  389. }
  390. int serial3_available(void)
  391. {
  392. uint32_t head, tail;
  393. head = rx_buffer_head;
  394. tail = rx_buffer_tail;
  395. if (head >= tail) return head - tail;
  396. return rx_buffer_total_size_ + head - tail;
  397. }
  398. int serial3_getchar(void)
  399. {
  400. uint32_t head, tail;
  401. int c;
  402. head = rx_buffer_head;
  403. tail = rx_buffer_tail;
  404. if (head == tail) return -1;
  405. if (++tail >= rx_buffer_total_size_) tail = 0;
  406. if (tail < SERIAL3_RX_BUFFER_SIZE) {
  407. c = rx_buffer[tail];
  408. } else {
  409. c = rx_buffer_storage_[tail-SERIAL3_RX_BUFFER_SIZE];
  410. }
  411. rx_buffer_tail = tail;
  412. if (rts_pin) {
  413. int avail;
  414. if (head >= tail) avail = head - tail;
  415. else avail = rx_buffer_total_size_ + head - tail;
  416. if (avail <= rts_low_watermark_) rts_assert();
  417. }
  418. return c;
  419. }
  420. int serial3_peek(void)
  421. {
  422. uint32_t head, tail;
  423. head = rx_buffer_head;
  424. tail = rx_buffer_tail;
  425. if (head == tail) return -1;
  426. if (++tail >= rx_buffer_total_size_) tail = 0;
  427. if (tail < SERIAL3_RX_BUFFER_SIZE) {
  428. return rx_buffer[tail];
  429. }
  430. return rx_buffer_storage_[tail-SERIAL3_RX_BUFFER_SIZE];
  431. }
  432. void serial3_clear(void)
  433. {
  434. rx_buffer_head = rx_buffer_tail;
  435. if (rts_pin) rts_assert();
  436. }
  437. // status interrupt combines
  438. // Transmit data below watermark UART_S1_TDRE
  439. // Transmit complete UART_S1_TC
  440. // Idle line UART_S1_IDLE
  441. // Receive data above watermark UART_S1_RDRF
  442. // LIN break detect UART_S2_LBKDIF
  443. // RxD pin active edge UART_S2_RXEDGIF
  444. void uart2_status_isr(void)
  445. {
  446. uint32_t head, tail, n;
  447. uint8_t c;
  448. if (UART2_S1 & UART_S1_RDRF) {
  449. if (use9Bits && (UART2_C3 & 0x80)) {
  450. n = UART2_D | 0x100;
  451. } else {
  452. n = UART2_D;
  453. }
  454. head = rx_buffer_head + 1;
  455. if (head >= rx_buffer_total_size_) head = 0;
  456. if (head != rx_buffer_tail) {
  457. if (head < SERIAL3_RX_BUFFER_SIZE) {
  458. rx_buffer[head] = n;
  459. } else {
  460. rx_buffer_storage_[head-SERIAL3_RX_BUFFER_SIZE] = n;
  461. }
  462. rx_buffer_head = head;
  463. }
  464. if (rts_pin) {
  465. int avail;
  466. tail = tx_buffer_tail;
  467. if (head >= tail) avail = head - tail;
  468. else avail = rx_buffer_total_size_ + head - tail;
  469. if (avail >= rts_high_watermark_) rts_deassert();
  470. }
  471. }
  472. c = UART2_C2;
  473. if ((c & UART_C2_TIE) && (UART2_S1 & UART_S1_TDRE)) {
  474. head = tx_buffer_head;
  475. tail = tx_buffer_tail;
  476. if (head == tail) {
  477. UART2_C2 = C2_TX_COMPLETING;
  478. } else {
  479. if (++tail >= tx_buffer_total_size_) tail = 0;
  480. if (tail < SERIAL3_TX_BUFFER_SIZE) {
  481. n = tx_buffer[tail];
  482. } else {
  483. n = tx_buffer_storage_[tail-SERIAL3_TX_BUFFER_SIZE];
  484. }
  485. if (use9Bits) UART2_C3 = (UART2_C3 & ~0x40) | ((n & 0x100) >> 2);
  486. UART2_D = n;
  487. tx_buffer_tail = tail;
  488. }
  489. }
  490. if ((c & UART_C2_TCIE) && (UART2_S1 & UART_S1_TC)) {
  491. transmitting = 0;
  492. if (transmit_pin) transmit_deassert();
  493. #if defined(KINETISL)
  494. if (transmit_pin) transmit_deassert();
  495. if (half_duplex_mode) {
  496. __disable_irq();
  497. volatile uint32_t reg = UART2_C3;
  498. reg &= ~UART_C3_TXDIR;
  499. UART2_C3 = reg;
  500. __enable_irq();
  501. }
  502. #endif
  503. UART2_C2 = C2_TX_INACTIVE;
  504. }
  505. }
  506. void serial3_add_memory_for_read(void *buffer, size_t length)
  507. {
  508. rx_buffer_storage_ = (BUFTYPE*)buffer;
  509. if (buffer) {
  510. rx_buffer_total_size_ = SERIAL3_RX_BUFFER_SIZE + length;
  511. } else {
  512. rx_buffer_total_size_ = SERIAL3_RX_BUFFER_SIZE;
  513. }
  514. rts_low_watermark_ = RTS_LOW_WATERMARK + length;
  515. rts_high_watermark_ = RTS_HIGH_WATERMARK + length;
  516. }
  517. void serial3_add_memory_for_write(void *buffer, size_t length)
  518. {
  519. tx_buffer_storage_ = (BUFTYPE*)buffer;
  520. if (buffer) {
  521. tx_buffer_total_size_ = SERIAL3_TX_BUFFER_SIZE + length;
  522. } else {
  523. tx_buffer_total_size_ = SERIAL3_TX_BUFFER_SIZE;
  524. }
  525. }