Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

10 лет назад
9 лет назад
8 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
9 лет назад
8 лет назад
9 лет назад
8 лет назад
9 лет назад
8 лет назад
9 лет назад
8 лет назад
9 лет назад
10 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
10 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
10 лет назад
9 лет назад
11 лет назад
9 лет назад
9 лет назад
9 лет назад
11 лет назад
10 лет назад
9 лет назад
10 лет назад
9 лет назад
9 лет назад
10 лет назад
11 лет назад
11 лет назад
10 лет назад
9 лет назад
9 лет назад
11 лет назад
10 лет назад
10 лет назад
11 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
11 лет назад
10 лет назад
11 лет назад
10 лет назад
11 лет назад
10 лет назад
11 лет назад
9 лет назад
11 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. #endif
  99. };
  100. #elif defined(KINETISL)
  101. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  102. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  103. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  104. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  105. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  106. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  107. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  108. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  109. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  110. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  129. };
  130. #endif
  131. typedef void (*voidFuncPtr)(void);
  132. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  133. #if defined(KINETISK)
  134. static void porta_interrupt(void);
  135. static void portb_interrupt(void);
  136. static void portc_interrupt(void);
  137. static void portd_interrupt(void);
  138. static void porte_interrupt(void);
  139. #elif defined(KINETISL)
  140. static void porta_interrupt(void);
  141. static void portcd_interrupt(void);
  142. #endif
  143. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  144. {
  145. _VectorsRam[irq + 16] = function;
  146. }
  147. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  148. {
  149. volatile uint32_t *config;
  150. uint32_t cfg, mask;
  151. if (pin >= CORE_NUM_DIGITAL) return;
  152. switch (mode) {
  153. case CHANGE: mask = 0x0B; break;
  154. case RISING: mask = 0x09; break;
  155. case FALLING: mask = 0x0A; break;
  156. case LOW: mask = 0x08; break;
  157. case HIGH: mask = 0x0C; break;
  158. default: return;
  159. }
  160. mask = (mask << 16) | 0x01000000;
  161. config = portConfigRegister(pin);
  162. #if defined(KINETISK)
  163. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  164. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  165. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  166. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  167. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  168. #elif defined(KINETISL)
  169. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  170. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  171. #endif
  172. __disable_irq();
  173. cfg = *config;
  174. cfg &= ~0x000F0000; // disable any previous interrupt
  175. *config = cfg;
  176. intFunc[pin] = function; // set the function pointer
  177. cfg |= mask;
  178. *config = cfg; // enable the new interrupt
  179. __enable_irq();
  180. }
  181. void detachInterrupt(uint8_t pin)
  182. {
  183. volatile uint32_t *config;
  184. config = portConfigRegister(pin);
  185. __disable_irq();
  186. *config = ((*config & ~0x000F0000) | 0x01000000);
  187. intFunc[pin] = NULL;
  188. __enable_irq();
  189. }
  190. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  191. static void porta_interrupt(void)
  192. {
  193. uint32_t isfr = PORTA_ISFR;
  194. PORTA_ISFR = isfr;
  195. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  196. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  197. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  198. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  199. }
  200. static void portb_interrupt(void)
  201. {
  202. uint32_t isfr = PORTB_ISFR;
  203. PORTB_ISFR = isfr;
  204. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  205. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  206. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  207. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  208. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  209. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  210. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  211. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  212. }
  213. static void portc_interrupt(void)
  214. {
  215. // TODO: these are inefficent. Use CLZ somehow....
  216. uint32_t isfr = PORTC_ISFR;
  217. PORTC_ISFR = isfr;
  218. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  219. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  220. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  221. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  222. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  223. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  224. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  225. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  226. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  227. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  228. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  229. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  230. }
  231. static void portd_interrupt(void)
  232. {
  233. uint32_t isfr = PORTD_ISFR;
  234. PORTD_ISFR = isfr;
  235. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  236. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  237. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  238. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  239. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  240. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  241. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  242. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  243. }
  244. static void porte_interrupt(void)
  245. {
  246. uint32_t isfr = PORTE_ISFR;
  247. PORTE_ISFR = isfr;
  248. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  249. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  250. }
  251. #elif defined(__MKL26Z64__)
  252. static void porta_interrupt(void)
  253. {
  254. uint32_t isfr = PORTA_ISFR;
  255. PORTA_ISFR = isfr;
  256. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  257. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  258. }
  259. static void portcd_interrupt(void)
  260. {
  261. uint32_t isfr = PORTC_ISFR;
  262. PORTC_ISFR = isfr;
  263. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  264. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  265. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  266. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  267. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  268. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  269. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  270. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  271. isfr = PORTD_ISFR;
  272. PORTD_ISFR = isfr;
  273. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  274. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  275. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  276. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  277. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  278. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  279. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  280. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  281. }
  282. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  283. static void porta_interrupt(void)
  284. {
  285. uint32_t isfr = PORTA_ISFR;
  286. PORTA_ISFR = isfr;
  287. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  288. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  289. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  290. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  291. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  292. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  293. if ((isfr & CORE_PIN39_BITMASK) && intFunc[39]) intFunc[39]();
  294. if ((isfr & CORE_PIN40_BITMASK) && intFunc[40]) intFunc[40]();
  295. if ((isfr & CORE_PIN41_BITMASK) && intFunc[41]) intFunc[41]();
  296. if ((isfr & CORE_PIN42_BITMASK) && intFunc[42]) intFunc[42]();
  297. }
  298. static void portb_interrupt(void)
  299. {
  300. uint32_t isfr = PORTB_ISFR;
  301. PORTB_ISFR = isfr;
  302. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  303. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  304. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  305. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  306. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  307. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  308. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  309. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  310. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  311. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  312. if ((isfr & CORE_PIN43_BITMASK) && intFunc[43]) intFunc[43]();
  313. if ((isfr & CORE_PIN44_BITMASK) && intFunc[44]) intFunc[44]();
  314. if ((isfr & CORE_PIN45_BITMASK) && intFunc[45]) intFunc[45]();
  315. if ((isfr & CORE_PIN46_BITMASK) && intFunc[46]) intFunc[46]();
  316. if ((isfr & CORE_PIN49_BITMASK) && intFunc[49]) intFunc[49]();
  317. if ((isfr & CORE_PIN50_BITMASK) && intFunc[50]) intFunc[50]();
  318. }
  319. static void portc_interrupt(void)
  320. {
  321. // TODO: these are inefficent. Use CLZ somehow....
  322. uint32_t isfr = PORTC_ISFR;
  323. PORTC_ISFR = isfr;
  324. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  325. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  326. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  327. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  328. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  329. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  330. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  331. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  332. if ((isfr & CORE_PIN35_BITMASK) && intFunc[35]) intFunc[35]();
  333. if ((isfr & CORE_PIN36_BITMASK) && intFunc[36]) intFunc[36]();
  334. if ((isfr & CORE_PIN37_BITMASK) && intFunc[37]) intFunc[37]();
  335. if ((isfr & CORE_PIN38_BITMASK) && intFunc[38]) intFunc[38]();
  336. }
  337. static void portd_interrupt(void)
  338. {
  339. uint32_t isfr = PORTD_ISFR;
  340. PORTD_ISFR = isfr;
  341. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  342. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  343. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  344. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  345. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  346. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  347. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  348. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  349. if ((isfr & CORE_PIN47_BITMASK) && intFunc[47]) intFunc[47]();
  350. if ((isfr & CORE_PIN48_BITMASK) && intFunc[48]) intFunc[48]();
  351. if ((isfr & CORE_PIN51_BITMASK) && intFunc[51]) intFunc[51]();
  352. if ((isfr & CORE_PIN52_BITMASK) && intFunc[52]) intFunc[52]();
  353. if ((isfr & CORE_PIN53_BITMASK) && intFunc[53]) intFunc[53]();
  354. if ((isfr & CORE_PIN54_BITMASK) && intFunc[54]) intFunc[54]();
  355. if ((isfr & CORE_PIN55_BITMASK) && intFunc[55]) intFunc[55]();
  356. }
  357. static void porte_interrupt(void)
  358. {
  359. uint32_t isfr = PORTE_ISFR;
  360. PORTE_ISFR = isfr;
  361. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  362. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  363. if ((isfr & CORE_PIN34_BITMASK) && intFunc[34]) intFunc[34]();
  364. if ((isfr & CORE_PIN56_BITMASK) && intFunc[56]) intFunc[56]();
  365. if ((isfr & CORE_PIN57_BITMASK) && intFunc[57]) intFunc[57]();
  366. }
  367. #endif
  368. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  369. unsigned long rtc_get(void)
  370. {
  371. return RTC_TSR;
  372. }
  373. void rtc_set(unsigned long t)
  374. {
  375. RTC_SR = 0;
  376. RTC_TPR = 0;
  377. RTC_TSR = t;
  378. RTC_SR = RTC_SR_TCE;
  379. }
  380. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  381. // For example, adjust = -100 is slows the clock by 11.92 ppm
  382. //
  383. void rtc_compensate(int adjust)
  384. {
  385. uint32_t comp, interval, tcr;
  386. // This simple approach tries to maximize the interval.
  387. // Perhaps minimizing TCR would be better, so the
  388. // compensation is distributed more evenly across
  389. // many seconds, rather than saving it all up and then
  390. // altering one second up to +/- 0.38%
  391. if (adjust >= 0) {
  392. comp = adjust;
  393. interval = 256;
  394. while (1) {
  395. tcr = comp * interval;
  396. if (tcr < 128*256) break;
  397. if (--interval == 1) break;
  398. }
  399. tcr = tcr >> 8;
  400. } else {
  401. comp = -adjust;
  402. interval = 256;
  403. while (1) {
  404. tcr = comp * interval;
  405. if (tcr < 129*256) break;
  406. if (--interval == 1) break;
  407. }
  408. tcr = tcr >> 8;
  409. tcr = 256 - tcr;
  410. }
  411. RTC_TCR = ((interval - 1) << 8) | tcr;
  412. }
  413. #else
  414. unsigned long rtc_get(void) { return 0; }
  415. void rtc_set(unsigned long t) { }
  416. void rtc_compensate(int adjust) { }
  417. #endif
  418. #if 0
  419. // TODO: build system should define this
  420. // so RTC is automatically initialized to approx correct time
  421. // at least when the program begins running right after upload
  422. #ifndef TIME_T
  423. #define TIME_T 1350160272
  424. #endif
  425. void init_rtc(void)
  426. {
  427. serial_print("init_rtc\n");
  428. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  429. // enable the RTC crystal oscillator, for approx 12pf crystal
  430. if (!(RTC_CR & RTC_CR_OSCE)) {
  431. serial_print("start RTC oscillator\n");
  432. RTC_SR = 0;
  433. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  434. }
  435. // should wait for crystal to stabilize.....
  436. serial_print("SR=");
  437. serial_phex32(RTC_SR);
  438. serial_print("\n");
  439. serial_print("CR=");
  440. serial_phex32(RTC_CR);
  441. serial_print("\n");
  442. serial_print("TSR=");
  443. serial_phex32(RTC_TSR);
  444. serial_print("\n");
  445. serial_print("TCR=");
  446. serial_phex32(RTC_TCR);
  447. serial_print("\n");
  448. if (RTC_SR & RTC_SR_TIF) {
  449. // enable the RTC
  450. RTC_SR = 0;
  451. RTC_TPR = 0;
  452. RTC_TSR = TIME_T;
  453. RTC_SR = RTC_SR_TCE;
  454. }
  455. }
  456. #endif
  457. extern void usb_init(void);
  458. // create a default PWM at the same 488.28 Hz as Arduino Uno
  459. #if defined(KINETISK)
  460. #define F_TIMER F_BUS
  461. #elif defined(KINETISL)
  462. #if F_CPU > 16000000
  463. #define F_TIMER (F_PLL/2)
  464. #else
  465. #define F_TIMER (F_PLL)
  466. #endif//Low Power
  467. #endif
  468. #if F_TIMER == 120000000
  469. #define DEFAULT_FTM_MOD (61440 - 1)
  470. #define DEFAULT_FTM_PRESCALE 2
  471. #elif F_TIMER == 108000000
  472. #define DEFAULT_FTM_MOD (55296 - 1)
  473. #define DEFAULT_FTM_PRESCALE 2
  474. #elif F_TIMER == 96000000
  475. #define DEFAULT_FTM_MOD (49152 - 1)
  476. #define DEFAULT_FTM_PRESCALE 2
  477. #elif F_TIMER == 90000000
  478. #define DEFAULT_FTM_MOD (46080 - 1)
  479. #define DEFAULT_FTM_PRESCALE 2
  480. #elif F_TIMER == 80000000
  481. #define DEFAULT_FTM_MOD (40960 - 1)
  482. #define DEFAULT_FTM_PRESCALE 2
  483. #elif F_TIMER == 72000000
  484. #define DEFAULT_FTM_MOD (36864 - 1)
  485. #define DEFAULT_FTM_PRESCALE 2
  486. #elif F_TIMER == 64000000
  487. #define DEFAULT_FTM_MOD (65536 - 1)
  488. #define DEFAULT_FTM_PRESCALE 1
  489. #elif F_TIMER == 60000000
  490. #define DEFAULT_FTM_MOD (61440 - 1)
  491. #define DEFAULT_FTM_PRESCALE 1
  492. #elif F_TIMER == 56000000
  493. #define DEFAULT_FTM_MOD (57344 - 1)
  494. #define DEFAULT_FTM_PRESCALE 1
  495. #elif F_TIMER == 54000000
  496. #define DEFAULT_FTM_MOD (55296 - 1)
  497. #define DEFAULT_FTM_PRESCALE 1
  498. #elif F_TIMER == 48000000
  499. #define DEFAULT_FTM_MOD (49152 - 1)
  500. #define DEFAULT_FTM_PRESCALE 1
  501. #elif F_TIMER == 40000000
  502. #define DEFAULT_FTM_MOD (40960 - 1)
  503. #define DEFAULT_FTM_PRESCALE 1
  504. #elif F_TIMER == 36000000
  505. #define DEFAULT_FTM_MOD (36864 - 1)
  506. #define DEFAULT_FTM_PRESCALE 1
  507. #elif F_TIMER == 24000000
  508. #define DEFAULT_FTM_MOD (49152 - 1)
  509. #define DEFAULT_FTM_PRESCALE 0
  510. #elif F_TIMER == 16000000
  511. #define DEFAULT_FTM_MOD (32768 - 1)
  512. #define DEFAULT_FTM_PRESCALE 0
  513. #elif F_TIMER == 8000000
  514. #define DEFAULT_FTM_MOD (16384 - 1)
  515. #define DEFAULT_FTM_PRESCALE 0
  516. #elif F_TIMER == 4000000
  517. #define DEFAULT_FTM_MOD (8192 - 1)
  518. #define DEFAULT_FTM_PRESCALE 0
  519. #elif F_TIMER == 2000000
  520. #define DEFAULT_FTM_MOD (4096 - 1)
  521. #define DEFAULT_FTM_PRESCALE 0
  522. #endif
  523. //void init_pins(void)
  524. void _init_Teensyduino_internal_(void)
  525. {
  526. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  527. NVIC_ENABLE_IRQ(IRQ_PORTA);
  528. NVIC_ENABLE_IRQ(IRQ_PORTB);
  529. NVIC_ENABLE_IRQ(IRQ_PORTC);
  530. NVIC_ENABLE_IRQ(IRQ_PORTD);
  531. NVIC_ENABLE_IRQ(IRQ_PORTE);
  532. #elif defined(__MKL26Z64__)
  533. NVIC_ENABLE_IRQ(IRQ_PORTA);
  534. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  535. #endif
  536. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  537. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  538. FTM0_CNT = 0;
  539. FTM0_MOD = DEFAULT_FTM_MOD;
  540. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  541. FTM0_C1SC = 0x28;
  542. FTM0_C2SC = 0x28;
  543. FTM0_C3SC = 0x28;
  544. FTM0_C4SC = 0x28;
  545. FTM0_C5SC = 0x28;
  546. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  547. FTM0_C6SC = 0x28;
  548. FTM0_C7SC = 0x28;
  549. #endif
  550. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  551. FTM3_C0SC = 0x28;
  552. FTM3_C1SC = 0x28;
  553. FTM3_C2SC = 0x28;
  554. FTM3_C3SC = 0x28;
  555. FTM3_C4SC = 0x28;
  556. FTM3_C5SC = 0x28;
  557. FTM3_C6SC = 0x28;
  558. FTM3_C7SC = 0x28;
  559. #endif
  560. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  561. FTM1_CNT = 0;
  562. FTM1_MOD = DEFAULT_FTM_MOD;
  563. FTM1_C0SC = 0x28;
  564. FTM1_C1SC = 0x28;
  565. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  566. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  567. FTM2_CNT = 0;
  568. FTM2_MOD = DEFAULT_FTM_MOD;
  569. FTM2_C0SC = 0x28;
  570. FTM2_C1SC = 0x28;
  571. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  572. #endif
  573. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  574. FTM3_CNT = 0;
  575. FTM3_MOD = DEFAULT_FTM_MOD;
  576. FTM3_C0SC = 0x28;
  577. FTM3_C1SC = 0x28;
  578. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  579. #endif
  580. analog_init();
  581. // for background about this startup delay, please see this conversation
  582. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  583. delay(400);
  584. usb_init();
  585. }
  586. #if defined(__MK20DX128__)
  587. #define FTM0_CH0_PIN 22
  588. #define FTM0_CH1_PIN 23
  589. #define FTM0_CH2_PIN 9
  590. #define FTM0_CH3_PIN 10
  591. #define FTM0_CH4_PIN 6
  592. #define FTM0_CH5_PIN 20
  593. #define FTM0_CH6_PIN 21
  594. #define FTM0_CH7_PIN 5
  595. #define FTM1_CH0_PIN 3
  596. #define FTM1_CH1_PIN 4
  597. #elif defined(__MK20DX256__)
  598. #define FTM0_CH0_PIN 22
  599. #define FTM0_CH1_PIN 23
  600. #define FTM0_CH2_PIN 9
  601. #define FTM0_CH3_PIN 10
  602. #define FTM0_CH4_PIN 6
  603. #define FTM0_CH5_PIN 20
  604. #define FTM0_CH6_PIN 21
  605. #define FTM0_CH7_PIN 5
  606. #define FTM1_CH0_PIN 3
  607. #define FTM1_CH1_PIN 4
  608. #define FTM2_CH0_PIN 32
  609. #define FTM2_CH1_PIN 25
  610. #elif defined(__MKL26Z64__)
  611. #define FTM0_CH0_PIN 22
  612. #define FTM0_CH1_PIN 23
  613. #define FTM0_CH2_PIN 9
  614. #define FTM0_CH3_PIN 10
  615. #define FTM0_CH4_PIN 6
  616. #define FTM0_CH5_PIN 20
  617. #define FTM1_CH0_PIN 16
  618. #define FTM1_CH1_PIN 17
  619. #define FTM2_CH0_PIN 3
  620. #define FTM2_CH1_PIN 4
  621. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  622. #define FTM0_CH0_PIN 22
  623. #define FTM0_CH1_PIN 23
  624. #define FTM0_CH2_PIN 9
  625. #define FTM0_CH3_PIN 10
  626. #define FTM0_CH4_PIN 6
  627. #define FTM0_CH5_PIN 20
  628. #define FTM0_CH6_PIN 21
  629. #define FTM0_CH7_PIN 5
  630. #define FTM1_CH0_PIN 3
  631. #define FTM1_CH1_PIN 4
  632. #define FTM2_CH0_PIN 29
  633. #define FTM2_CH1_PIN 30
  634. #define FTM3_CH0_PIN 2
  635. #define FTM3_CH1_PIN 14
  636. #define FTM3_CH2_PIN 7
  637. #define FTM3_CH3_PIN 8
  638. #define FTM3_CH4_PIN 35
  639. #define FTM3_CH5_PIN 36
  640. #define FTM3_CH6_PIN 37
  641. #define FTM3_CH7_PIN 38
  642. #endif
  643. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  644. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  645. static uint8_t analog_write_res = 8;
  646. // SOPT4 is SIM select clocks?
  647. // FTM is clocked by the bus clock, either 24 or 48 MHz
  648. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  649. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  650. void analogWrite(uint8_t pin, int val)
  651. {
  652. uint32_t cval, max;
  653. #if defined(__MK20DX256__)
  654. if (pin == A14) {
  655. uint8_t res = analog_write_res;
  656. if (res < 12) {
  657. val <<= 12 - res;
  658. } else if (res > 12) {
  659. val >>= res - 12;
  660. }
  661. analogWriteDAC0(val);
  662. return;
  663. }
  664. #elif defined(__MKL26Z64__)
  665. if (pin == A12) {
  666. uint8_t res = analog_write_res;
  667. if (res < 12) {
  668. val <<= 12 - res;
  669. } else if (res > 12) {
  670. val >>= res - 12;
  671. }
  672. analogWriteDAC0(val);
  673. return;
  674. }
  675. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  676. if (pin == A21 || pin == A22) {
  677. uint8_t res = analog_write_res;
  678. if (res < 12) {
  679. val <<= 12 - res;
  680. } else if (res > 12) {
  681. val >>= res - 12;
  682. }
  683. if (pin == A21) analogWriteDAC0(val);
  684. else analogWriteDAC1(val);
  685. return;
  686. }
  687. #endif
  688. max = 1 << analog_write_res;
  689. if (val <= 0) {
  690. digitalWrite(pin, LOW);
  691. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  692. return;
  693. } else if (val >= max) {
  694. digitalWrite(pin, HIGH);
  695. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  696. return;
  697. }
  698. //serial_print("analogWrite\n");
  699. //serial_print("val = ");
  700. //serial_phex32(val);
  701. //serial_print("\n");
  702. //serial_print("analog_write_res = ");
  703. //serial_phex(analog_write_res);
  704. //serial_print("\n");
  705. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  706. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  707. #if defined(FTM2_CH0_PIN)
  708. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  709. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  710. #endif
  711. } else {
  712. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  713. }
  714. //serial_print("cval = ");
  715. //serial_phex32(cval);
  716. //serial_print("\n");
  717. switch (pin) {
  718. #ifdef FTM0_CH0_PIN
  719. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  720. FTM0_C0V = cval;
  721. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  722. break;
  723. #endif
  724. #ifdef FTM0_CH1_PIN
  725. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  726. FTM0_C1V = cval;
  727. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  728. break;
  729. #endif
  730. #ifdef FTM0_CH2_PIN
  731. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  732. FTM0_C2V = cval;
  733. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  734. break;
  735. #endif
  736. #ifdef FTM0_CH3_PIN
  737. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  738. FTM0_C3V = cval;
  739. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  740. break;
  741. #endif
  742. #ifdef FTM0_CH4_PIN
  743. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  744. FTM0_C4V = cval;
  745. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  746. break;
  747. #endif
  748. #ifdef FTM0_CH5_PIN
  749. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  750. FTM0_C5V = cval;
  751. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  752. break;
  753. #endif
  754. #ifdef FTM0_CH6_PIN
  755. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  756. FTM0_C6V = cval;
  757. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  758. break;
  759. #endif
  760. #ifdef FTM0_CH7_PIN
  761. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  762. FTM0_C7V = cval;
  763. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  764. break;
  765. #endif
  766. #ifdef FTM1_CH0_PIN
  767. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  768. FTM1_C0V = cval;
  769. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  770. break;
  771. #endif
  772. #ifdef FTM1_CH1_PIN
  773. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  774. FTM1_C1V = cval;
  775. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  776. break;
  777. #endif
  778. #ifdef FTM2_CH0_PIN
  779. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  780. FTM2_C0V = cval;
  781. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  782. break;
  783. #endif
  784. #ifdef FTM2_CH1_PIN
  785. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  786. FTM2_C1V = cval;
  787. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  788. break;
  789. #endif
  790. #ifdef FTM3_CH0_PIN
  791. case FTM3_CH0_PIN:
  792. FTM3_C0V = cval;
  793. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  794. break;
  795. #endif
  796. #ifdef FTM3_CH1_PIN
  797. case FTM3_CH1_PIN:
  798. FTM3_C1V = cval;
  799. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  800. break;
  801. #endif
  802. #ifdef FTM3_CH2_PIN
  803. case FTM3_CH2_PIN:
  804. FTM3_C2V = cval;
  805. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  806. break;
  807. #endif
  808. #ifdef FTM3_CH3_PIN
  809. case FTM3_CH3_PIN:
  810. FTM3_C3V = cval;
  811. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  812. break;
  813. #endif
  814. #ifdef FTM3_CH4_PIN
  815. case FTM3_CH4_PIN:
  816. FTM3_C4V = cval;
  817. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  818. break;
  819. #endif
  820. #ifdef FTM3_CH5_PIN
  821. case FTM3_CH5_PIN:
  822. FTM3_C5V = cval;
  823. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  824. break;
  825. #endif
  826. #ifdef FTM3_CH6_PIN
  827. case FTM3_CH6_PIN:
  828. FTM3_C6V = cval;
  829. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  830. break;
  831. #endif
  832. #ifdef FTM3_CH7_PIN
  833. case FTM3_CH7_PIN:
  834. FTM3_C7V = cval;
  835. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  836. break;
  837. #endif
  838. default:
  839. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  840. pinMode(pin, OUTPUT);
  841. }
  842. }
  843. void analogWriteRes(uint32_t bits)
  844. {
  845. if (bits < 1) {
  846. bits = 1;
  847. } else if (bits > 16) {
  848. bits = 16;
  849. }
  850. analog_write_res = bits;
  851. }
  852. void analogWriteFrequency(uint8_t pin, float frequency)
  853. {
  854. uint32_t prescale, mod, ftmClock, ftmClockSource;
  855. float minfreq;
  856. //serial_print("analogWriteFrequency: pin = ");
  857. //serial_phex(pin);
  858. //serial_print(", freq = ");
  859. //serial_phex32((uint32_t)frequency);
  860. //serial_print("\n");
  861. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) { //If frequency is too low for working with F_TIMER:
  862. ftmClockSource = 2; //Use alternative 31250Hz clock source
  863. ftmClock = 31250; //Set variable for the actual timer clock frequency
  864. } else { //Else do as before:
  865. ftmClockSource = 1; //Use default F_Timer clock source
  866. ftmClock = F_TIMER; //Set variable for the actual timer clock frequency
  867. }
  868. for (prescale = 0; prescale < 7; prescale++) {
  869. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  870. if (frequency >= minfreq) break;
  871. }
  872. //serial_print("F_TIMER/ftm_Clock = ");
  873. //serial_phex32(ftmClock >> prescale);
  874. //serial_print("\n");
  875. //serial_print("prescale = ");
  876. //serial_phex(prescale);
  877. //serial_print("\n");
  878. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  879. if (mod > 65535) mod = 65535;
  880. //serial_print("mod = ");
  881. //serial_phex32(mod);
  882. //serial_print("\n");
  883. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  884. FTM1_SC = 0;
  885. FTM1_CNT = 0;
  886. FTM1_MOD = mod;
  887. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  888. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  889. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  890. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  891. #ifdef FTM0_CH6_PIN
  892. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  893. #endif
  894. ) {
  895. FTM0_SC = 0;
  896. FTM0_CNT = 0;
  897. FTM0_MOD = mod;
  898. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  899. }
  900. #ifdef FTM2_CH0_PIN
  901. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  902. FTM2_SC = 0;
  903. FTM2_CNT = 0;
  904. FTM2_MOD = mod;
  905. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  906. }
  907. #endif
  908. #ifdef FTM3_CH0_PIN
  909. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  910. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  911. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  912. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  913. FTM3_SC = 0;
  914. FTM3_CNT = 0;
  915. FTM3_MOD = mod;
  916. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  917. }
  918. #endif
  919. }
  920. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  921. void digitalWrite(uint8_t pin, uint8_t val)
  922. {
  923. if (pin >= CORE_NUM_DIGITAL) return;
  924. #ifdef KINETISK
  925. if (*portModeRegister(pin)) {
  926. if (val) {
  927. *portSetRegister(pin) = 1;
  928. } else {
  929. *portClearRegister(pin) = 1;
  930. }
  931. #else
  932. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  933. if (val) {
  934. *portSetRegister(pin) = digitalPinToBitMask(pin);
  935. } else {
  936. *portClearRegister(pin) = digitalPinToBitMask(pin);
  937. }
  938. #endif
  939. } else {
  940. volatile uint32_t *config = portConfigRegister(pin);
  941. if (val) {
  942. // TODO use bitband for atomic read-mod-write
  943. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  944. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  945. } else {
  946. // TODO use bitband for atomic read-mod-write
  947. *config &= ~(PORT_PCR_PE);
  948. //*config = PORT_PCR_MUX(1);
  949. }
  950. }
  951. }
  952. uint8_t digitalRead(uint8_t pin)
  953. {
  954. if (pin >= CORE_NUM_DIGITAL) return 0;
  955. #ifdef KINETISK
  956. return *portInputRegister(pin);
  957. #else
  958. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  959. #endif
  960. }
  961. void pinMode(uint8_t pin, uint8_t mode)
  962. {
  963. volatile uint32_t *config;
  964. if (pin >= CORE_NUM_DIGITAL) return;
  965. config = portConfigRegister(pin);
  966. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  967. #ifdef KINETISK
  968. *portModeRegister(pin) = 1;
  969. #else
  970. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  971. #endif
  972. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  973. if (mode == OUTPUT_OPENDRAIN) {
  974. *config |= PORT_PCR_ODE;
  975. } else {
  976. *config &= ~PORT_PCR_ODE;
  977. }
  978. } else {
  979. #ifdef KINETISK
  980. *portModeRegister(pin) = 0;
  981. #else
  982. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  983. #endif
  984. if (mode == INPUT || mode == INPUT_PULLUP || mode == INPUT_PULLDOWN) {
  985. *config = PORT_PCR_MUX(1);
  986. if (mode == INPUT_PULLUP) {
  987. *config |= (PORT_PCR_PE | PORT_PCR_PS); // pullup
  988. } else if (mode == INPUT_PULLDOWN) {
  989. *config |= (PORT_PCR_PE); // pulldown
  990. *config &= ~(PORT_PCR_PS);
  991. }
  992. } else {
  993. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  994. }
  995. }
  996. }
  997. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  998. {
  999. if (bitOrder == LSBFIRST) {
  1000. shiftOut_lsbFirst(dataPin, clockPin, value);
  1001. } else {
  1002. shiftOut_msbFirst(dataPin, clockPin, value);
  1003. }
  1004. }
  1005. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1006. {
  1007. uint8_t mask;
  1008. for (mask=0x01; mask; mask <<= 1) {
  1009. digitalWrite(dataPin, value & mask);
  1010. digitalWrite(clockPin, HIGH);
  1011. digitalWrite(clockPin, LOW);
  1012. }
  1013. }
  1014. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1015. {
  1016. uint8_t mask;
  1017. for (mask=0x80; mask; mask >>= 1) {
  1018. digitalWrite(dataPin, value & mask);
  1019. digitalWrite(clockPin, HIGH);
  1020. digitalWrite(clockPin, LOW);
  1021. }
  1022. }
  1023. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1024. {
  1025. if (bitOrder == LSBFIRST) {
  1026. return shiftIn_lsbFirst(dataPin, clockPin);
  1027. } else {
  1028. return shiftIn_msbFirst(dataPin, clockPin);
  1029. }
  1030. }
  1031. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1032. {
  1033. uint8_t mask, value=0;
  1034. for (mask=0x01; mask; mask <<= 1) {
  1035. digitalWrite(clockPin, HIGH);
  1036. if (digitalRead(dataPin)) value |= mask;
  1037. digitalWrite(clockPin, LOW);
  1038. }
  1039. return value;
  1040. }
  1041. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1042. {
  1043. uint8_t mask, value=0;
  1044. for (mask=0x80; mask; mask >>= 1) {
  1045. digitalWrite(clockPin, HIGH);
  1046. if (digitalRead(dataPin)) value |= mask;
  1047. digitalWrite(clockPin, LOW);
  1048. }
  1049. return value;
  1050. }
  1051. // the systick interrupt is supposed to increment this at 1 kHz rate
  1052. volatile uint32_t systick_millis_count = 0;
  1053. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1054. uint32_t micros(void)
  1055. {
  1056. uint32_t count, current, istatus;
  1057. __disable_irq();
  1058. current = SYST_CVR;
  1059. count = systick_millis_count;
  1060. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1061. __enable_irq();
  1062. //systick_current = current;
  1063. //systick_count = count;
  1064. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1065. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1066. current = ((F_CPU / 1000) - 1) - current;
  1067. #if defined(KINETISL) && F_CPU == 48000000
  1068. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1069. #elif defined(KINETISL) && F_CPU == 24000000
  1070. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1071. #endif
  1072. return count * 1000 + current / (F_CPU / 1000000);
  1073. }
  1074. void delay(uint32_t ms)
  1075. {
  1076. uint32_t start = micros();
  1077. if (ms > 0) {
  1078. while (1) {
  1079. while ((micros() - start) >= 1000) {
  1080. ms--;
  1081. if (ms == 0) return;
  1082. start += 1000;
  1083. }
  1084. yield();
  1085. }
  1086. }
  1087. }
  1088. // TODO: verify these result in correct timeouts...
  1089. #if F_CPU == 240000000
  1090. #define PULSEIN_LOOPS_PER_USEC 33
  1091. #elif F_CPU == 216000000
  1092. #define PULSEIN_LOOPS_PER_USEC 31
  1093. #elif F_CPU == 192000000
  1094. #define PULSEIN_LOOPS_PER_USEC 29
  1095. #elif F_CPU == 180000000
  1096. #define PULSEIN_LOOPS_PER_USEC 27
  1097. #elif F_CPU == 168000000
  1098. #define PULSEIN_LOOPS_PER_USEC 25
  1099. #elif F_CPU == 144000000
  1100. #define PULSEIN_LOOPS_PER_USEC 21
  1101. #elif F_CPU == 120000000
  1102. #define PULSEIN_LOOPS_PER_USEC 18
  1103. #elif F_CPU == 96000000
  1104. #define PULSEIN_LOOPS_PER_USEC 14
  1105. #elif F_CPU == 72000000
  1106. #define PULSEIN_LOOPS_PER_USEC 10
  1107. #elif F_CPU == 48000000
  1108. #define PULSEIN_LOOPS_PER_USEC 7
  1109. #elif F_CPU == 24000000
  1110. #define PULSEIN_LOOPS_PER_USEC 4
  1111. #elif F_CPU == 16000000
  1112. #define PULSEIN_LOOPS_PER_USEC 1
  1113. #elif F_CPU == 8000000
  1114. #define PULSEIN_LOOPS_PER_USEC 1
  1115. #elif F_CPU == 4000000
  1116. #define PULSEIN_LOOPS_PER_USEC 1
  1117. #elif F_CPU == 2000000
  1118. #define PULSEIN_LOOPS_PER_USEC 1
  1119. #endif
  1120. #if defined(KINETISK)
  1121. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1122. {
  1123. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1124. uint32_t usec_start, usec_stop;
  1125. // wait for any previous pulse to end
  1126. while (*reg) {
  1127. if (--timeout_count == 0) return 0;
  1128. }
  1129. // wait for the pulse to start
  1130. while (!*reg) {
  1131. if (--timeout_count == 0) return 0;
  1132. }
  1133. usec_start = micros();
  1134. // wait for the pulse to stop
  1135. while (*reg) {
  1136. if (--timeout_count == 0) return 0;
  1137. }
  1138. usec_stop = micros();
  1139. return usec_stop - usec_start;
  1140. }
  1141. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1142. {
  1143. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1144. uint32_t usec_start, usec_stop;
  1145. // wait for any previous pulse to end
  1146. while (!*reg) {
  1147. if (--timeout_count == 0) return 0;
  1148. }
  1149. // wait for the pulse to start
  1150. while (*reg) {
  1151. if (--timeout_count == 0) return 0;
  1152. }
  1153. usec_start = micros();
  1154. // wait for the pulse to stop
  1155. while (!*reg) {
  1156. if (--timeout_count == 0) return 0;
  1157. }
  1158. usec_stop = micros();
  1159. return usec_stop - usec_start;
  1160. }
  1161. // TODO: an inline version should handle the common case where state is const
  1162. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1163. {
  1164. if (pin >= CORE_NUM_DIGITAL) return 0;
  1165. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1166. return pulseIn_low(portInputRegister(pin), timeout);;
  1167. }
  1168. #elif defined(KINETISL)
  1169. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1170. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1171. {
  1172. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1173. uint32_t usec_start, usec_stop;
  1174. // wait for any previous pulse to end
  1175. while (*reg & mask) {
  1176. if (--timeout_count == 0) return -1;
  1177. }
  1178. // wait for the pulse to start
  1179. while (!(*reg & mask)) {
  1180. if (--timeout_count == 0) return 0;
  1181. }
  1182. usec_start = micros();
  1183. // wait for the pulse to stop
  1184. while (*reg & mask) {
  1185. if (--timeout_count == 0) return 0;
  1186. }
  1187. usec_stop = micros();
  1188. return usec_stop - usec_start;
  1189. }
  1190. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1191. {
  1192. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1193. uint32_t usec_start, usec_stop;
  1194. // wait for any previous pulse to end
  1195. while (!(*reg & mask)) {
  1196. if (--timeout_count == 0) return 0;
  1197. }
  1198. // wait for the pulse to start
  1199. while (*reg & mask) {
  1200. if (--timeout_count == 0) return 0;
  1201. }
  1202. usec_start = micros();
  1203. // wait for the pulse to stop
  1204. while (!(*reg & mask)) {
  1205. if (--timeout_count == 0) return 0;
  1206. }
  1207. usec_stop = micros();
  1208. return usec_stop - usec_start;
  1209. }
  1210. // TODO: an inline version should handle the common case where state is const
  1211. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1212. {
  1213. if (pin >= CORE_NUM_DIGITAL) return 0;
  1214. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1215. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1216. }
  1217. #endif