Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

pins_teensy.c 31KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
  73. };
  74. #elif defined(KINETISL)
  75. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  76. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  77. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  78. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  79. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  80. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  81. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  82. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  83. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  84. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  85. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  86. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  87. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  88. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  89. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  90. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  91. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  92. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  93. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  94. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  95. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  96. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  97. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  98. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  99. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  100. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  101. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  102. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  103. };
  104. #endif
  105. typedef void (*voidFuncPtr)(void);
  106. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  107. #if defined(KINETISK)
  108. static void porta_interrupt(void);
  109. static void portb_interrupt(void);
  110. static void portc_interrupt(void);
  111. static void portd_interrupt(void);
  112. static void porte_interrupt(void);
  113. #elif defined(KINETISL)
  114. static void porta_interrupt(void);
  115. static void portcd_interrupt(void);
  116. #endif
  117. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  118. {
  119. _VectorsRam[irq + 16] = function;
  120. }
  121. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  122. {
  123. volatile uint32_t *config;
  124. uint32_t cfg, mask;
  125. if (pin >= CORE_NUM_DIGITAL) return;
  126. switch (mode) {
  127. case CHANGE: mask = 0x0B; break;
  128. case RISING: mask = 0x09; break;
  129. case FALLING: mask = 0x0A; break;
  130. case LOW: mask = 0x08; break;
  131. case HIGH: mask = 0x0C; break;
  132. default: return;
  133. }
  134. mask = (mask << 16) | 0x01000000;
  135. config = portConfigRegister(pin);
  136. #if defined(KINETISK)
  137. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  138. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  139. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  140. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  141. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  142. #elif defined(KINETISL)
  143. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  144. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  145. #endif
  146. __disable_irq();
  147. cfg = *config;
  148. cfg &= ~0x000F0000; // disable any previous interrupt
  149. *config = cfg;
  150. intFunc[pin] = function; // set the function pointer
  151. cfg |= mask;
  152. *config = cfg; // enable the new interrupt
  153. __enable_irq();
  154. }
  155. void detachInterrupt(uint8_t pin)
  156. {
  157. volatile uint32_t *config;
  158. config = portConfigRegister(pin);
  159. __disable_irq();
  160. *config = ((*config & ~0x000F0000) | 0x01000000);
  161. intFunc[pin] = NULL;
  162. __enable_irq();
  163. }
  164. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  165. static void porta_interrupt(void)
  166. {
  167. uint32_t isfr = PORTA_ISFR;
  168. PORTA_ISFR = isfr;
  169. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  170. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  171. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  172. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  173. }
  174. static void portb_interrupt(void)
  175. {
  176. uint32_t isfr = PORTB_ISFR;
  177. PORTB_ISFR = isfr;
  178. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  179. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  180. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  181. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  182. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  183. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  184. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  185. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  186. }
  187. static void portc_interrupt(void)
  188. {
  189. // TODO: these are inefficent. Use CLZ somehow....
  190. uint32_t isfr = PORTC_ISFR;
  191. PORTC_ISFR = isfr;
  192. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  193. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  194. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  195. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  196. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  197. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  198. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  199. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  200. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  201. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  202. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  203. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  204. }
  205. static void portd_interrupt(void)
  206. {
  207. uint32_t isfr = PORTD_ISFR;
  208. PORTD_ISFR = isfr;
  209. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  210. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  211. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  212. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  213. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  214. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  215. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  216. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  217. }
  218. static void porte_interrupt(void)
  219. {
  220. uint32_t isfr = PORTE_ISFR;
  221. PORTE_ISFR = isfr;
  222. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  223. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  224. }
  225. #elif defined(__MKL26Z64__)
  226. static void porta_interrupt(void)
  227. {
  228. uint32_t isfr = PORTA_ISFR;
  229. PORTA_ISFR = isfr;
  230. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  231. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  232. }
  233. static void portcd_interrupt(void)
  234. {
  235. uint32_t isfr = PORTC_ISFR;
  236. PORTC_ISFR = isfr;
  237. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  238. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  239. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  240. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  241. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  242. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  243. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  244. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  245. isfr = PORTD_ISFR;
  246. PORTD_ISFR = isfr;
  247. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  248. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  249. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  250. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  251. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  252. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  253. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  254. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  255. }
  256. #endif
  257. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  258. unsigned long rtc_get(void)
  259. {
  260. return RTC_TSR;
  261. }
  262. void rtc_set(unsigned long t)
  263. {
  264. RTC_SR = 0;
  265. RTC_TPR = 0;
  266. RTC_TSR = t;
  267. RTC_SR = RTC_SR_TCE;
  268. }
  269. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  270. // For example, adjust = -100 is slows the clock by 11.92 ppm
  271. //
  272. void rtc_compensate(int adjust)
  273. {
  274. uint32_t comp, interval, tcr;
  275. // This simple approach tries to maximize the interval.
  276. // Perhaps minimizing TCR would be better, so the
  277. // compensation is distributed more evenly across
  278. // many seconds, rather than saving it all up and then
  279. // altering one second up to +/- 0.38%
  280. if (adjust >= 0) {
  281. comp = adjust;
  282. interval = 256;
  283. while (1) {
  284. tcr = comp * interval;
  285. if (tcr < 128*256) break;
  286. if (--interval == 1) break;
  287. }
  288. tcr = tcr >> 8;
  289. } else {
  290. comp = -adjust;
  291. interval = 256;
  292. while (1) {
  293. tcr = comp * interval;
  294. if (tcr < 129*256) break;
  295. if (--interval == 1) break;
  296. }
  297. tcr = tcr >> 8;
  298. tcr = 256 - tcr;
  299. }
  300. RTC_TCR = ((interval - 1) << 8) | tcr;
  301. }
  302. #else
  303. unsigned long rtc_get(void) { return 0; }
  304. void rtc_set(unsigned long t) { }
  305. void rtc_compensate(int adjust) { }
  306. #endif
  307. #if 0
  308. // TODO: build system should define this
  309. // so RTC is automatically initialized to approx correct time
  310. // at least when the program begins running right after upload
  311. #ifndef TIME_T
  312. #define TIME_T 1350160272
  313. #endif
  314. void init_rtc(void)
  315. {
  316. serial_print("init_rtc\n");
  317. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  318. // enable the RTC crystal oscillator, for approx 12pf crystal
  319. if (!(RTC_CR & RTC_CR_OSCE)) {
  320. serial_print("start RTC oscillator\n");
  321. RTC_SR = 0;
  322. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  323. }
  324. // should wait for crystal to stabilize.....
  325. serial_print("SR=");
  326. serial_phex32(RTC_SR);
  327. serial_print("\n");
  328. serial_print("CR=");
  329. serial_phex32(RTC_CR);
  330. serial_print("\n");
  331. serial_print("TSR=");
  332. serial_phex32(RTC_TSR);
  333. serial_print("\n");
  334. serial_print("TCR=");
  335. serial_phex32(RTC_TCR);
  336. serial_print("\n");
  337. if (RTC_SR & RTC_SR_TIF) {
  338. // enable the RTC
  339. RTC_SR = 0;
  340. RTC_TPR = 0;
  341. RTC_TSR = TIME_T;
  342. RTC_SR = RTC_SR_TCE;
  343. }
  344. }
  345. #endif
  346. extern void usb_init(void);
  347. // create a default PWM at the same 488.28 Hz as Arduino Uno
  348. #if defined(KINETISK)
  349. #define F_TIMER F_BUS
  350. #elif defined(KINETISL)
  351. #if F_CPU > 16000000
  352. #define F_TIMER (F_PLL/2)
  353. #else
  354. #define F_TIMER (F_PLL)
  355. #endif//Low Power
  356. #endif
  357. #if F_TIMER == 60000000
  358. #define DEFAULT_FTM_MOD (61440 - 1)
  359. #define DEFAULT_FTM_PRESCALE 1
  360. #elif F_TIMER == 56000000
  361. #define DEFAULT_FTM_MOD (57344 - 1)
  362. #define DEFAULT_FTM_PRESCALE 1
  363. #elif F_TIMER == 48000000
  364. #define DEFAULT_FTM_MOD (49152 - 1)
  365. #define DEFAULT_FTM_PRESCALE 1
  366. #elif F_TIMER == 40000000
  367. #define DEFAULT_FTM_MOD (40960 - 1)
  368. #define DEFAULT_FTM_PRESCALE 1
  369. #elif F_TIMER == 36000000
  370. #define DEFAULT_FTM_MOD (36864 - 1)
  371. #define DEFAULT_FTM_PRESCALE 1
  372. #elif F_TIMER == 24000000
  373. #define DEFAULT_FTM_MOD (49152 - 1)
  374. #define DEFAULT_FTM_PRESCALE 0
  375. #elif F_TIMER == 16000000
  376. #define DEFAULT_FTM_MOD (32768 - 1)
  377. #define DEFAULT_FTM_PRESCALE 0
  378. #elif F_TIMER == 8000000
  379. #define DEFAULT_FTM_MOD (16384 - 1)
  380. #define DEFAULT_FTM_PRESCALE 0
  381. #elif F_TIMER == 4000000
  382. #define DEFAULT_FTM_MOD (8192 - 1)
  383. #define DEFAULT_FTM_PRESCALE 0
  384. #elif F_TIMER == 2000000
  385. #define DEFAULT_FTM_MOD (4096 - 1)
  386. #define DEFAULT_FTM_PRESCALE 0
  387. #endif
  388. //void init_pins(void)
  389. void _init_Teensyduino_internal_(void)
  390. {
  391. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  392. NVIC_ENABLE_IRQ(IRQ_PORTA);
  393. NVIC_ENABLE_IRQ(IRQ_PORTB);
  394. NVIC_ENABLE_IRQ(IRQ_PORTC);
  395. NVIC_ENABLE_IRQ(IRQ_PORTD);
  396. NVIC_ENABLE_IRQ(IRQ_PORTE);
  397. #elif defined(__MKL26Z64__)
  398. NVIC_ENABLE_IRQ(IRQ_PORTA);
  399. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  400. #endif
  401. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  402. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  403. FTM0_CNT = 0;
  404. FTM0_MOD = DEFAULT_FTM_MOD;
  405. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  406. FTM0_C1SC = 0x28;
  407. FTM0_C2SC = 0x28;
  408. FTM0_C3SC = 0x28;
  409. FTM0_C4SC = 0x28;
  410. FTM0_C5SC = 0x28;
  411. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  412. FTM0_C6SC = 0x28;
  413. FTM0_C7SC = 0x28;
  414. #endif
  415. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  416. FTM1_CNT = 0;
  417. FTM1_MOD = DEFAULT_FTM_MOD;
  418. FTM1_C0SC = 0x28;
  419. FTM1_C1SC = 0x28;
  420. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  421. #if defined(__MK20DX256__) || defined(__MKL26Z64__)
  422. FTM2_CNT = 0;
  423. FTM2_MOD = DEFAULT_FTM_MOD;
  424. FTM2_C0SC = 0x28;
  425. FTM2_C1SC = 0x28;
  426. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  427. #endif
  428. analog_init();
  429. //delay(100); // TODO: this is not necessary, right?
  430. delay(4);
  431. usb_init();
  432. }
  433. #if defined(__MK20DX128__)
  434. #define FTM0_CH0_PIN 22
  435. #define FTM0_CH1_PIN 23
  436. #define FTM0_CH2_PIN 9
  437. #define FTM0_CH3_PIN 10
  438. #define FTM0_CH4_PIN 6
  439. #define FTM0_CH5_PIN 20
  440. #define FTM0_CH6_PIN 21
  441. #define FTM0_CH7_PIN 5
  442. #define FTM1_CH0_PIN 3
  443. #define FTM1_CH1_PIN 4
  444. #elif defined(__MK20DX256__)
  445. #define FTM0_CH0_PIN 22
  446. #define FTM0_CH1_PIN 23
  447. #define FTM0_CH2_PIN 9
  448. #define FTM0_CH3_PIN 10
  449. #define FTM0_CH4_PIN 6
  450. #define FTM0_CH5_PIN 20
  451. #define FTM0_CH6_PIN 21
  452. #define FTM0_CH7_PIN 5
  453. #define FTM1_CH0_PIN 3
  454. #define FTM1_CH1_PIN 4
  455. #define FTM2_CH0_PIN 32
  456. #define FTM2_CH1_PIN 25
  457. #elif defined(__MKL26Z64__)
  458. #define FTM0_CH0_PIN 22
  459. #define FTM0_CH1_PIN 23
  460. #define FTM0_CH2_PIN 9
  461. #define FTM0_CH3_PIN 10
  462. #define FTM0_CH4_PIN 6
  463. #define FTM0_CH5_PIN 20
  464. #define FTM1_CH0_PIN 16
  465. #define FTM1_CH1_PIN 17
  466. #define FTM2_CH0_PIN 3
  467. #define FTM2_CH1_PIN 4
  468. #endif
  469. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  470. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  471. static uint8_t analog_write_res = 8;
  472. // SOPT4 is SIM select clocks?
  473. // FTM is clocked by the bus clock, either 24 or 48 MHz
  474. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  475. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  476. void analogWrite(uint8_t pin, int val)
  477. {
  478. uint32_t cval, max;
  479. #if defined(__MK20DX256__)
  480. if (pin == A14) {
  481. uint8_t res = analog_write_res;
  482. if (res < 12) {
  483. val <<= 12 - res;
  484. } else if (res > 12) {
  485. val >>= res - 12;
  486. }
  487. analogWriteDAC0(val);
  488. return;
  489. }
  490. #elif defined(__MKL26Z64__)
  491. if (pin == A12) {
  492. uint8_t res = analog_write_res;
  493. if (res < 12) {
  494. val <<= 12 - res;
  495. } else if (res > 12) {
  496. val >>= res - 12;
  497. }
  498. analogWriteDAC0(val);
  499. return;
  500. }
  501. #endif
  502. max = 1 << analog_write_res;
  503. if (val <= 0) {
  504. digitalWrite(pin, LOW);
  505. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  506. return;
  507. } else if (val >= max) {
  508. digitalWrite(pin, HIGH);
  509. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  510. return;
  511. }
  512. //serial_print("analogWrite\n");
  513. //serial_print("val = ");
  514. //serial_phex32(val);
  515. //serial_print("\n");
  516. //serial_print("analog_write_res = ");
  517. //serial_phex(analog_write_res);
  518. //serial_print("\n");
  519. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  520. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  521. #if defined(FTM2_CH0_PIN)
  522. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  523. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  524. #endif
  525. } else {
  526. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  527. }
  528. //serial_print("cval = ");
  529. //serial_phex32(cval);
  530. //serial_print("\n");
  531. switch (pin) {
  532. #ifdef FTM0_CH0_PIN
  533. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  534. FTM0_C0V = cval;
  535. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  536. break;
  537. #endif
  538. #ifdef FTM0_CH1_PIN
  539. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  540. FTM0_C1V = cval;
  541. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  542. break;
  543. #endif
  544. #ifdef FTM0_CH2_PIN
  545. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  546. FTM0_C2V = cval;
  547. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  548. break;
  549. #endif
  550. #ifdef FTM0_CH3_PIN
  551. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  552. FTM0_C3V = cval;
  553. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  554. break;
  555. #endif
  556. #ifdef FTM0_CH4_PIN
  557. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  558. FTM0_C4V = cval;
  559. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  560. break;
  561. #endif
  562. #ifdef FTM0_CH5_PIN
  563. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  564. FTM0_C5V = cval;
  565. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  566. break;
  567. #endif
  568. #ifdef FTM0_CH6_PIN
  569. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  570. FTM0_C6V = cval;
  571. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  572. break;
  573. #endif
  574. #ifdef FTM0_CH7_PIN
  575. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  576. FTM0_C7V = cval;
  577. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  578. break;
  579. #endif
  580. #ifdef FTM1_CH0_PIN
  581. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  582. FTM1_C0V = cval;
  583. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  584. break;
  585. #endif
  586. #ifdef FTM1_CH1_PIN
  587. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  588. FTM1_C1V = cval;
  589. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  590. break;
  591. #endif
  592. #ifdef FTM2_CH0_PIN
  593. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  594. FTM2_C0V = cval;
  595. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  596. break;
  597. #endif
  598. #ifdef FTM2_CH1_PIN
  599. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  600. FTM2_C1V = cval;
  601. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  602. break;
  603. #endif
  604. default:
  605. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  606. pinMode(pin, OUTPUT);
  607. }
  608. }
  609. void analogWriteRes(uint32_t bits)
  610. {
  611. if (bits < 1) {
  612. bits = 1;
  613. } else if (bits > 16) {
  614. bits = 16;
  615. }
  616. analog_write_res = bits;
  617. }
  618. void analogWriteFrequency(uint8_t pin, float frequency)
  619. {
  620. uint32_t prescale, mod;
  621. float minfreq;
  622. //serial_print("analogWriteFrequency: pin = ");
  623. //serial_phex(pin);
  624. //serial_print(", freq = ");
  625. //serial_phex32((uint32_t)frequency);
  626. //serial_print("\n");
  627. for (prescale = 0; prescale < 7; prescale++) {
  628. minfreq = (float)(F_TIMER >> prescale) / 65536.0f;
  629. if (frequency >= minfreq) break;
  630. }
  631. //serial_print("F_TIMER = ");
  632. //serial_phex32(F_TIMER >> prescale);
  633. //serial_print("\n");
  634. //serial_print("prescale = ");
  635. //serial_phex(prescale);
  636. //serial_print("\n");
  637. mod = (float)(F_TIMER >> prescale) / frequency - 0.5f;
  638. if (mod > 65535) mod = 65535;
  639. //serial_print("mod = ");
  640. //serial_phex32(mod);
  641. //serial_print("\n");
  642. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  643. FTM1_SC = 0;
  644. FTM1_CNT = 0;
  645. FTM1_MOD = mod;
  646. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  647. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  648. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  649. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  650. #ifdef FTM0_CH6_PIN
  651. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  652. #endif
  653. ) {
  654. FTM0_SC = 0;
  655. FTM0_CNT = 0;
  656. FTM0_MOD = mod;
  657. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  658. }
  659. #ifdef FTM2_CH0_PIN
  660. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  661. FTM2_SC = 0;
  662. FTM2_CNT = 0;
  663. FTM2_MOD = mod;
  664. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  665. }
  666. #endif
  667. }
  668. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  669. void digitalWrite(uint8_t pin, uint8_t val)
  670. {
  671. if (pin >= CORE_NUM_DIGITAL) return;
  672. #ifdef KINETISK
  673. if (*portModeRegister(pin)) {
  674. if (val) {
  675. *portSetRegister(pin) = 1;
  676. } else {
  677. *portClearRegister(pin) = 1;
  678. }
  679. #else
  680. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  681. if (val) {
  682. *portSetRegister(pin) = digitalPinToBitMask(pin);
  683. } else {
  684. *portClearRegister(pin) = digitalPinToBitMask(pin);
  685. }
  686. #endif
  687. } else {
  688. volatile uint32_t *config = portConfigRegister(pin);
  689. if (val) {
  690. // TODO use bitband for atomic read-mod-write
  691. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  692. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  693. } else {
  694. // TODO use bitband for atomic read-mod-write
  695. *config &= ~(PORT_PCR_PE);
  696. //*config = PORT_PCR_MUX(1);
  697. }
  698. }
  699. }
  700. uint8_t digitalRead(uint8_t pin)
  701. {
  702. if (pin >= CORE_NUM_DIGITAL) return 0;
  703. #ifdef KINETISK
  704. return *portInputRegister(pin);
  705. #else
  706. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  707. #endif
  708. }
  709. void pinMode(uint8_t pin, uint8_t mode)
  710. {
  711. volatile uint32_t *config;
  712. if (pin >= CORE_NUM_DIGITAL) return;
  713. config = portConfigRegister(pin);
  714. if (mode == OUTPUT) {
  715. #ifdef KINETISK
  716. *portModeRegister(pin) = 1;
  717. #else
  718. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  719. #endif
  720. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  721. } else {
  722. #ifdef KINETISK
  723. *portModeRegister(pin) = 0;
  724. #else
  725. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  726. #endif
  727. if (mode == INPUT) {
  728. *config = PORT_PCR_MUX(1);
  729. } else {
  730. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  731. }
  732. }
  733. }
  734. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  735. {
  736. if (bitOrder == LSBFIRST) {
  737. shiftOut_lsbFirst(dataPin, clockPin, value);
  738. } else {
  739. shiftOut_msbFirst(dataPin, clockPin, value);
  740. }
  741. }
  742. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  743. {
  744. uint8_t mask;
  745. for (mask=0x01; mask; mask <<= 1) {
  746. digitalWrite(dataPin, value & mask);
  747. digitalWrite(clockPin, HIGH);
  748. digitalWrite(clockPin, LOW);
  749. }
  750. }
  751. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  752. {
  753. uint8_t mask;
  754. for (mask=0x80; mask; mask >>= 1) {
  755. digitalWrite(dataPin, value & mask);
  756. digitalWrite(clockPin, HIGH);
  757. digitalWrite(clockPin, LOW);
  758. }
  759. }
  760. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  761. {
  762. if (bitOrder == LSBFIRST) {
  763. return shiftIn_lsbFirst(dataPin, clockPin);
  764. } else {
  765. return shiftIn_msbFirst(dataPin, clockPin);
  766. }
  767. }
  768. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  769. {
  770. uint8_t mask, value=0;
  771. for (mask=0x01; mask; mask <<= 1) {
  772. digitalWrite(clockPin, HIGH);
  773. if (digitalRead(dataPin)) value |= mask;
  774. digitalWrite(clockPin, LOW);
  775. }
  776. return value;
  777. }
  778. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  779. {
  780. uint8_t mask, value=0;
  781. for (mask=0x80; mask; mask >>= 1) {
  782. digitalWrite(clockPin, HIGH);
  783. if (digitalRead(dataPin)) value |= mask;
  784. digitalWrite(clockPin, LOW);
  785. }
  786. return value;
  787. }
  788. // the systick interrupt is supposed to increment this at 1 kHz rate
  789. volatile uint32_t systick_millis_count = 0;
  790. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  791. uint32_t micros(void)
  792. {
  793. uint32_t count, current, istatus;
  794. __disable_irq();
  795. current = SYST_CVR;
  796. count = systick_millis_count;
  797. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  798. __enable_irq();
  799. //systick_current = current;
  800. //systick_count = count;
  801. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  802. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  803. current = ((F_CPU / 1000) - 1) - current;
  804. #if defined(KINETISL) && F_CPU == 48000000
  805. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  806. #elif defined(KINETISL) && F_CPU == 24000000
  807. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  808. #endif
  809. return count * 1000 + current / (F_CPU / 1000000);
  810. }
  811. void delay(uint32_t ms)
  812. {
  813. uint32_t start = micros();
  814. if (ms > 0) {
  815. while (1) {
  816. if ((micros() - start) >= 1000) {
  817. ms--;
  818. if (ms == 0) return;
  819. start += 1000;
  820. }
  821. yield();
  822. }
  823. }
  824. }
  825. // TODO: verify these result in correct timeouts...
  826. #if F_CPU == 168000000
  827. #define PULSEIN_LOOPS_PER_USEC 25
  828. #elif F_CPU == 144000000
  829. #define PULSEIN_LOOPS_PER_USEC 21
  830. #elif F_CPU == 120000000
  831. #define PULSEIN_LOOPS_PER_USEC 18
  832. #elif F_CPU == 96000000
  833. #define PULSEIN_LOOPS_PER_USEC 14
  834. #elif F_CPU == 72000000
  835. #define PULSEIN_LOOPS_PER_USEC 10
  836. #elif F_CPU == 48000000
  837. #define PULSEIN_LOOPS_PER_USEC 7
  838. #elif F_CPU == 24000000
  839. #define PULSEIN_LOOPS_PER_USEC 4
  840. #elif F_CPU == 16000000
  841. #define PULSEIN_LOOPS_PER_USEC 1
  842. #elif F_CPU == 8000000
  843. #define PULSEIN_LOOPS_PER_USEC 1
  844. #elif F_CPU == 4000000
  845. #define PULSEIN_LOOPS_PER_USEC 1
  846. #elif F_CPU == 2000000
  847. #define PULSEIN_LOOPS_PER_USEC 1
  848. #endif
  849. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  850. {
  851. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  852. uint32_t usec_start, usec_stop;
  853. // wait for any previous pulse to end
  854. while (*reg) {
  855. if (--timeout_count == 0) return 0;
  856. }
  857. // wait for the pulse to start
  858. while (!*reg) {
  859. if (--timeout_count == 0) return 0;
  860. }
  861. usec_start = micros();
  862. // wait for the pulse to stop
  863. while (*reg) {
  864. if (--timeout_count == 0) return 0;
  865. }
  866. usec_stop = micros();
  867. return usec_stop - usec_start;
  868. }
  869. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  870. {
  871. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  872. uint32_t usec_start, usec_stop;
  873. // wait for any previous pulse to end
  874. while (!*reg) {
  875. if (--timeout_count == 0) return 0;
  876. }
  877. // wait for the pulse to start
  878. while (*reg) {
  879. if (--timeout_count == 0) return 0;
  880. }
  881. usec_start = micros();
  882. // wait for the pulse to stop
  883. while (!*reg) {
  884. if (--timeout_count == 0) return 0;
  885. }
  886. usec_stop = micros();
  887. return usec_stop - usec_start;
  888. }
  889. // TODO: an inline version should handle the common case where state is const
  890. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  891. {
  892. if (pin >= CORE_NUM_DIGITAL) return 0;
  893. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  894. return pulseIn_low(portInputRegister(pin), timeout);;
  895. }