You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

usb_dev.c 29KB

9 jaren geleden
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2016 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. *
  30. * Trying to understand this rather complex code?
  31. *
  32. * Kevin Cuzner wrote a simpler version, and a great blog article:
  33. * http://kevincuzner.com/2014/12/12/teensy-3-1-bare-metal-writing-a-usb-driver/
  34. * https://github.com/kcuzner/teensy-oscilloscope/blob/master/scope-teensy/src/usb.c
  35. *
  36. * Andy Payne wrote another relatively simple USB example for Freescale Kinetis
  37. * https://github.com/payne92/bare-metal-arm
  38. */
  39. #include "usb_dev.h"
  40. #if F_CPU >= 20000000 && defined(NUM_ENDPOINTS)
  41. #include "kinetis.h"
  42. //#include "HardwareSerial.h"
  43. #include "usb_mem.h"
  44. // buffer descriptor table
  45. typedef struct {
  46. uint32_t desc;
  47. void * addr;
  48. } bdt_t;
  49. __attribute__ ((section(".usbdescriptortable"), used))
  50. static bdt_t table[(NUM_ENDPOINTS+1)*4];
  51. static usb_packet_t *rx_first[NUM_ENDPOINTS];
  52. static usb_packet_t *rx_last[NUM_ENDPOINTS];
  53. static usb_packet_t *tx_first[NUM_ENDPOINTS];
  54. static usb_packet_t *tx_last[NUM_ENDPOINTS];
  55. uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
  56. static uint8_t tx_state[NUM_ENDPOINTS];
  57. #define TX_STATE_BOTH_FREE_EVEN_FIRST 0
  58. #define TX_STATE_BOTH_FREE_ODD_FIRST 1
  59. #define TX_STATE_EVEN_FREE 2
  60. #define TX_STATE_ODD_FREE 3
  61. #define TX_STATE_NONE_FREE_EVEN_FIRST 4
  62. #define TX_STATE_NONE_FREE_ODD_FIRST 5
  63. #define BDT_OWN 0x80
  64. #define BDT_DATA1 0x40
  65. #define BDT_DATA0 0x00
  66. #define BDT_DTS 0x08
  67. #define BDT_STALL 0x04
  68. #define BDT_PID(n) (((n) >> 2) & 15)
  69. #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
  70. | ((data) ? BDT_DATA1 : BDT_DATA0) \
  71. | ((count) << 16))
  72. #define TX 1
  73. #define RX 0
  74. #define ODD 1
  75. #define EVEN 0
  76. #define DATA0 0
  77. #define DATA1 1
  78. #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  79. #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  80. static union {
  81. struct {
  82. union {
  83. struct {
  84. uint8_t bmRequestType;
  85. uint8_t bRequest;
  86. };
  87. uint16_t wRequestAndType;
  88. };
  89. uint16_t wValue;
  90. uint16_t wIndex;
  91. uint16_t wLength;
  92. };
  93. struct {
  94. uint32_t word1;
  95. uint32_t word2;
  96. };
  97. } setup;
  98. #define GET_STATUS 0
  99. #define CLEAR_FEATURE 1
  100. #define SET_FEATURE 3
  101. #define SET_ADDRESS 5
  102. #define GET_DESCRIPTOR 6
  103. #define SET_DESCRIPTOR 7
  104. #define GET_CONFIGURATION 8
  105. #define SET_CONFIGURATION 9
  106. #define GET_INTERFACE 10
  107. #define SET_INTERFACE 11
  108. #define SYNCH_FRAME 12
  109. // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
  110. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
  111. // Status stage uses a DATA1 PID.
  112. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  113. static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  114. static const uint8_t *ep0_tx_ptr = NULL;
  115. static uint16_t ep0_tx_len;
  116. static uint8_t ep0_tx_bdt_bank = 0;
  117. static uint8_t ep0_tx_data_toggle = 0;
  118. uint8_t usb_rx_memory_needed = 0;
  119. volatile uint8_t usb_configuration = 0;
  120. volatile uint8_t usb_reboot_timer = 0;
  121. static void endpoint0_stall(void)
  122. {
  123. USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  124. }
  125. static void endpoint0_transmit(const void *data, uint32_t len)
  126. {
  127. #if 0
  128. serial_print("tx0:");
  129. serial_phex32((uint32_t)data);
  130. serial_print(",");
  131. serial_phex16(len);
  132. serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
  133. serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
  134. #endif
  135. table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
  136. table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
  137. ep0_tx_data_toggle ^= 1;
  138. ep0_tx_bdt_bank ^= 1;
  139. }
  140. static uint8_t reply_buffer[8];
  141. static void usb_setup(void)
  142. {
  143. const uint8_t *data = NULL;
  144. uint32_t datalen = 0;
  145. const usb_descriptor_list_t *list;
  146. uint32_t size;
  147. volatile uint8_t *reg;
  148. uint8_t epconf;
  149. const uint8_t *cfg;
  150. int i;
  151. switch (setup.wRequestAndType) {
  152. case 0x0500: // SET_ADDRESS
  153. break;
  154. case 0x0900: // SET_CONFIGURATION
  155. //serial_print("configure\n");
  156. usb_configuration = setup.wValue;
  157. reg = &USB0_ENDPT1;
  158. cfg = usb_endpoint_config_table;
  159. // clear all BDT entries, free any allocated memory...
  160. for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
  161. if (table[i].desc & BDT_OWN) {
  162. usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
  163. }
  164. }
  165. // free all queued packets
  166. for (i=0; i < NUM_ENDPOINTS; i++) {
  167. usb_packet_t *p, *n;
  168. p = rx_first[i];
  169. while (p) {
  170. n = p->next;
  171. usb_free(p);
  172. p = n;
  173. }
  174. rx_first[i] = NULL;
  175. rx_last[i] = NULL;
  176. p = tx_first[i];
  177. while (p) {
  178. n = p->next;
  179. usb_free(p);
  180. p = n;
  181. }
  182. tx_first[i] = NULL;
  183. tx_last[i] = NULL;
  184. usb_rx_byte_count_data[i] = 0;
  185. switch (tx_state[i]) {
  186. case TX_STATE_EVEN_FREE:
  187. case TX_STATE_NONE_FREE_EVEN_FIRST:
  188. tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  189. break;
  190. case TX_STATE_ODD_FREE:
  191. case TX_STATE_NONE_FREE_ODD_FIRST:
  192. tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
  193. break;
  194. default:
  195. break;
  196. }
  197. }
  198. usb_rx_memory_needed = 0;
  199. for (i=1; i <= NUM_ENDPOINTS; i++) {
  200. epconf = *cfg++;
  201. *reg = epconf;
  202. reg += 4;
  203. #ifdef AUDIO_INTERFACE
  204. if (i == AUDIO_RX_ENDPOINT) {
  205. table[index(i, RX, EVEN)].addr = usb_audio_receive_buffer;
  206. table[index(i, RX, EVEN)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  207. table[index(i, RX, ODD)].addr = usb_audio_receive_buffer;
  208. table[index(i, RX, ODD)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  209. } else
  210. #endif
  211. if (epconf & USB_ENDPT_EPRXEN) {
  212. usb_packet_t *p;
  213. p = usb_malloc();
  214. if (p) {
  215. table[index(i, RX, EVEN)].addr = p->buf;
  216. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  217. } else {
  218. table[index(i, RX, EVEN)].desc = 0;
  219. usb_rx_memory_needed++;
  220. }
  221. p = usb_malloc();
  222. if (p) {
  223. table[index(i, RX, ODD)].addr = p->buf;
  224. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  225. } else {
  226. table[index(i, RX, ODD)].desc = 0;
  227. usb_rx_memory_needed++;
  228. }
  229. }
  230. table[index(i, TX, EVEN)].desc = 0;
  231. table[index(i, TX, ODD)].desc = 0;
  232. #ifdef AUDIO_INTERFACE
  233. if (i == AUDIO_SYNC_ENDPOINT) {
  234. table[index(i, TX, EVEN)].addr = &usb_audio_sync_feedback;
  235. table[index(i, TX, EVEN)].desc = (3<<16) | BDT_OWN;
  236. }
  237. #endif
  238. }
  239. break;
  240. case 0x0880: // GET_CONFIGURATION
  241. reply_buffer[0] = usb_configuration;
  242. datalen = 1;
  243. data = reply_buffer;
  244. break;
  245. case 0x0080: // GET_STATUS (device)
  246. reply_buffer[0] = 0;
  247. reply_buffer[1] = 0;
  248. datalen = 2;
  249. data = reply_buffer;
  250. break;
  251. case 0x0082: // GET_STATUS (endpoint)
  252. if (setup.wIndex > NUM_ENDPOINTS) {
  253. // TODO: do we need to handle IN vs OUT here?
  254. endpoint0_stall();
  255. return;
  256. }
  257. reply_buffer[0] = 0;
  258. reply_buffer[1] = 0;
  259. if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
  260. data = reply_buffer;
  261. datalen = 2;
  262. break;
  263. case 0x0102: // CLEAR_FEATURE (endpoint)
  264. i = setup.wIndex & 0x7F;
  265. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  266. // TODO: do we need to handle IN vs OUT here?
  267. endpoint0_stall();
  268. return;
  269. }
  270. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) &= ~0x02;
  271. // TODO: do we need to clear the data toggle here?
  272. break;
  273. case 0x0302: // SET_FEATURE (endpoint)
  274. i = setup.wIndex & 0x7F;
  275. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  276. // TODO: do we need to handle IN vs OUT here?
  277. endpoint0_stall();
  278. return;
  279. }
  280. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) |= 0x02;
  281. // TODO: do we need to clear the data toggle here?
  282. break;
  283. case 0x0680: // GET_DESCRIPTOR
  284. case 0x0681:
  285. //serial_print("desc:");
  286. //serial_phex16(setup.wValue);
  287. //serial_print("\n");
  288. for (list = usb_descriptor_list; 1; list++) {
  289. if (list->addr == NULL) break;
  290. //if (setup.wValue == list->wValue &&
  291. //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
  292. if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
  293. data = list->addr;
  294. if ((setup.wValue >> 8) == 3) {
  295. // for string descriptors, use the descriptor's
  296. // length field, allowing runtime configured
  297. // length.
  298. datalen = *(list->addr);
  299. } else {
  300. datalen = list->length;
  301. }
  302. #if 0
  303. serial_print("Desc found, ");
  304. serial_phex32((uint32_t)data);
  305. serial_print(",");
  306. serial_phex16(datalen);
  307. serial_print(",");
  308. serial_phex(data[0]);
  309. serial_phex(data[1]);
  310. serial_phex(data[2]);
  311. serial_phex(data[3]);
  312. serial_phex(data[4]);
  313. serial_phex(data[5]);
  314. serial_print("\n");
  315. #endif
  316. goto send;
  317. }
  318. }
  319. //serial_print("desc: not found\n");
  320. endpoint0_stall();
  321. return;
  322. #if defined(CDC_STATUS_INTERFACE)
  323. case 0x2221: // CDC_SET_CONTROL_LINE_STATE
  324. usb_cdc_line_rtsdtr_millis = systick_millis_count;
  325. usb_cdc_line_rtsdtr = setup.wValue;
  326. //serial_print("set control line state\n");
  327. break;
  328. case 0x2321: // CDC_SEND_BREAK
  329. break;
  330. case 0x2021: // CDC_SET_LINE_CODING
  331. //serial_print("set coding, waiting...\n");
  332. return;
  333. #endif
  334. #if defined(MTP_INTERFACE)
  335. case 0x2164: // Cancel Request (PTP spec, 5.2.1, page 8)
  336. // TODO: required by PTP spec
  337. endpoint0_stall();
  338. return;
  339. case 0x2166: // Device Reset (PTP spec, 5.2.3, page 10)
  340. // TODO: required by PTP spec
  341. endpoint0_stall();
  342. return;
  343. case 0x2167: // Get Device Statis (PTP spec, 5.2.4, page 10)
  344. // TODO: required by PTP spec
  345. endpoint0_stall();
  346. return;
  347. #endif
  348. // TODO: this does not work... why?
  349. #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
  350. case 0x0921: // HID SET_REPORT
  351. //serial_print(":)\n");
  352. return;
  353. case 0x0A21: // HID SET_IDLE
  354. break;
  355. // case 0xC940:
  356. #endif
  357. #if defined(AUDIO_INTERFACE)
  358. case 0x0B01: // SET_INTERFACE (alternate setting)
  359. if (setup.wIndex == AUDIO_INTERFACE+1) {
  360. usb_audio_transmit_setting = setup.wValue;
  361. if (usb_audio_transmit_setting > 0) {
  362. bdt_t *b = &table[index(AUDIO_TX_ENDPOINT, TX, EVEN)];
  363. uint8_t state = tx_state[AUDIO_TX_ENDPOINT-1];
  364. if (state) b++;
  365. if (!(b->desc & BDT_OWN)) {
  366. memset(usb_audio_transmit_buffer, 0, 176);
  367. b->addr = usb_audio_transmit_buffer;
  368. b->desc = (176 << 16) | BDT_OWN;
  369. tx_state[AUDIO_TX_ENDPOINT-1] = state ^ 1;
  370. }
  371. }
  372. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  373. usb_audio_receive_setting = setup.wValue;
  374. } else {
  375. endpoint0_stall();
  376. return;
  377. }
  378. break;
  379. case 0x0A81: // GET_INTERFACE (alternate setting)
  380. datalen = 1;
  381. data = reply_buffer;
  382. if (setup.wIndex == AUDIO_INTERFACE+1) {
  383. reply_buffer[0] = usb_audio_transmit_setting;
  384. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  385. reply_buffer[0] = usb_audio_receive_setting;
  386. } else {
  387. endpoint0_stall();
  388. return;
  389. }
  390. break;
  391. case 0x0121: // SET FEATURE
  392. case 0x0221:
  393. case 0x0321:
  394. case 0x0421:
  395. // handle these on the next packet. See usb_audio_set_feature()
  396. return;
  397. case 0x81A1: // GET FEATURE
  398. case 0x82A1:
  399. case 0x83A1:
  400. case 0x84A1:
  401. if (usb_audio_get_feature(&setup, reply_buffer, &datalen)) {
  402. data = reply_buffer;
  403. }
  404. else {
  405. endpoint0_stall();
  406. return;
  407. }
  408. break;
  409. case 0x81A2: // GET_CUR (wValue=0, wIndex=interface, wLength=len)
  410. if (setup.wLength >= 3) {
  411. reply_buffer[0] = 44100 & 255;
  412. reply_buffer[1] = 44100 >> 8;
  413. reply_buffer[2] = 0;
  414. datalen = 3;
  415. data = reply_buffer;
  416. } else {
  417. endpoint0_stall();
  418. return;
  419. }
  420. break;
  421. #endif
  422. default:
  423. endpoint0_stall();
  424. return;
  425. }
  426. send:
  427. //serial_print("setup send ");
  428. //serial_phex32(data);
  429. //serial_print(",");
  430. //serial_phex16(datalen);
  431. //serial_print("\n");
  432. if (datalen > setup.wLength) datalen = setup.wLength;
  433. size = datalen;
  434. if (size > EP0_SIZE) size = EP0_SIZE;
  435. endpoint0_transmit(data, size);
  436. data += size;
  437. datalen -= size;
  438. if (datalen == 0 && size < EP0_SIZE) return;
  439. size = datalen;
  440. if (size > EP0_SIZE) size = EP0_SIZE;
  441. endpoint0_transmit(data, size);
  442. data += size;
  443. datalen -= size;
  444. if (datalen == 0 && size < EP0_SIZE) return;
  445. ep0_tx_ptr = data;
  446. ep0_tx_len = datalen;
  447. }
  448. //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
  449. //experiences any configuration event (configuration events are explained in
  450. //Sections 9.1.1.5 and 9.4.5).
  451. //Configuring a device or changing an alternate setting causes all of the status
  452. //and configuration values associated with endpoints in the affected interfaces
  453. //to be set to their default values. This includes setting the data toggle of
  454. //any endpoint using data toggles to the value DATA0.
  455. //For endpoints using data toggle, regardless of whether an endpoint has the
  456. //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
  457. //data toggle being reinitialized to DATA0.
  458. // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  459. static void usb_control(uint32_t stat)
  460. {
  461. bdt_t *b;
  462. uint32_t pid, size;
  463. uint8_t *buf;
  464. const uint8_t *data;
  465. b = stat2bufferdescriptor(stat);
  466. pid = BDT_PID(b->desc);
  467. //count = b->desc >> 16;
  468. buf = b->addr;
  469. //serial_print("pid:");
  470. //serial_phex(pid);
  471. //serial_print(", count:");
  472. //serial_phex(count);
  473. //serial_print("\n");
  474. switch (pid) {
  475. case 0x0D: // Setup received from host
  476. //serial_print("PID=Setup\n");
  477. //if (count != 8) ; // panic?
  478. // grab the 8 byte setup info
  479. setup.word1 = *(uint32_t *)(buf);
  480. setup.word2 = *(uint32_t *)(buf + 4);
  481. // give the buffer back
  482. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  483. //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
  484. //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
  485. // clear any leftover pending IN transactions
  486. ep0_tx_ptr = NULL;
  487. if (ep0_tx_data_toggle) {
  488. }
  489. //if (table[index(0, TX, EVEN)].desc & 0x80) {
  490. //serial_print("leftover tx even\n");
  491. //}
  492. //if (table[index(0, TX, ODD)].desc & 0x80) {
  493. //serial_print("leftover tx odd\n");
  494. //}
  495. table[index(0, TX, EVEN)].desc = 0;
  496. table[index(0, TX, ODD)].desc = 0;
  497. // first IN after Setup is always DATA1
  498. ep0_tx_data_toggle = 1;
  499. #if 0
  500. serial_print("bmRequestType:");
  501. serial_phex(setup.bmRequestType);
  502. serial_print(", bRequest:");
  503. serial_phex(setup.bRequest);
  504. serial_print(", wValue:");
  505. serial_phex16(setup.wValue);
  506. serial_print(", wIndex:");
  507. serial_phex16(setup.wIndex);
  508. serial_print(", len:");
  509. serial_phex16(setup.wLength);
  510. serial_print("\n");
  511. #endif
  512. // actually "do" the setup request
  513. usb_setup();
  514. // unfreeze the USB, now that we're ready
  515. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  516. break;
  517. case 0x01: // OUT transaction received from host
  518. case 0x02:
  519. //serial_print("PID=OUT\n");
  520. #ifdef CDC_STATUS_INTERFACE
  521. if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
  522. int i;
  523. uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
  524. //serial_print("set line coding ");
  525. for (i=0; i<7; i++) {
  526. //serial_phex(*buf);
  527. *dst++ = *buf++;
  528. }
  529. //serial_phex32(usb_cdc_line_coding[0]);
  530. //serial_print("\n");
  531. if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
  532. endpoint0_transmit(NULL, 0);
  533. }
  534. #endif
  535. #ifdef KEYBOARD_INTERFACE
  536. if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
  537. keyboard_leds = buf[0];
  538. endpoint0_transmit(NULL, 0);
  539. }
  540. #endif
  541. #ifdef SEREMU_INTERFACE
  542. if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
  543. && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
  544. usb_reboot_timer = 5;
  545. endpoint0_transmit(NULL, 0);
  546. }
  547. #endif
  548. #ifdef AUDIO_INTERFACE
  549. if (usb_audio_set_feature(&setup, buf)) {
  550. endpoint0_transmit(NULL, 0);
  551. }
  552. #endif
  553. // give the buffer back
  554. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  555. break;
  556. case 0x09: // IN transaction completed to host
  557. //serial_print("PID=IN:");
  558. //serial_phex(stat);
  559. //serial_print("\n");
  560. // send remaining data, if any...
  561. data = ep0_tx_ptr;
  562. if (data) {
  563. size = ep0_tx_len;
  564. if (size > EP0_SIZE) size = EP0_SIZE;
  565. endpoint0_transmit(data, size);
  566. data += size;
  567. ep0_tx_len -= size;
  568. ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
  569. }
  570. if (setup.bRequest == 5 && setup.bmRequestType == 0) {
  571. setup.bRequest = 0;
  572. //serial_print("set address: ");
  573. //serial_phex16(setup.wValue);
  574. //serial_print("\n");
  575. USB0_ADDR = setup.wValue;
  576. }
  577. break;
  578. //default:
  579. //serial_print("PID=unknown:");
  580. //serial_phex(pid);
  581. //serial_print("\n");
  582. }
  583. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  584. }
  585. usb_packet_t *usb_rx(uint32_t endpoint)
  586. {
  587. usb_packet_t *ret;
  588. endpoint--;
  589. if (endpoint >= NUM_ENDPOINTS) return NULL;
  590. __disable_irq();
  591. ret = rx_first[endpoint];
  592. if (ret) {
  593. rx_first[endpoint] = ret->next;
  594. usb_rx_byte_count_data[endpoint] -= ret->len;
  595. }
  596. __enable_irq();
  597. //serial_print("rx, epidx=");
  598. //serial_phex(endpoint);
  599. //serial_print(", packet=");
  600. //serial_phex32(ret);
  601. //serial_print("\n");
  602. return ret;
  603. }
  604. static uint32_t usb_queue_byte_count(const usb_packet_t *p)
  605. {
  606. uint32_t count=0;
  607. __disable_irq();
  608. for ( ; p; p = p->next) {
  609. count += p->len;
  610. }
  611. __enable_irq();
  612. return count;
  613. }
  614. // TODO: make this an inline function...
  615. /*
  616. uint32_t usb_rx_byte_count(uint32_t endpoint)
  617. {
  618. endpoint--;
  619. if (endpoint >= NUM_ENDPOINTS) return 0;
  620. return usb_rx_byte_count_data[endpoint];
  621. //return usb_queue_byte_count(rx_first[endpoint]);
  622. }
  623. */
  624. uint32_t usb_tx_byte_count(uint32_t endpoint)
  625. {
  626. endpoint--;
  627. if (endpoint >= NUM_ENDPOINTS) return 0;
  628. return usb_queue_byte_count(tx_first[endpoint]);
  629. }
  630. uint32_t usb_tx_packet_count(uint32_t endpoint)
  631. {
  632. const usb_packet_t *p;
  633. uint32_t count=0;
  634. endpoint--;
  635. if (endpoint >= NUM_ENDPOINTS) return 0;
  636. __disable_irq();
  637. for (p = tx_first[endpoint]; p; p = p->next) count++;
  638. __enable_irq();
  639. return count;
  640. }
  641. // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
  642. // receive endpoints are starving for memory. The intention is to give
  643. // endpoints needing receive memory priority over the user's code, which is
  644. // likely calling usb_malloc to obtain memory for transmitting. When the
  645. // user is creating data very quickly, their consumption could starve reception
  646. // without this prioritization. The packet buffer (input) is assigned to the
  647. // first endpoint needing memory.
  648. //
  649. void usb_rx_memory(usb_packet_t *packet)
  650. {
  651. unsigned int i;
  652. const uint8_t *cfg;
  653. cfg = usb_endpoint_config_table;
  654. //serial_print("rx_mem:");
  655. __disable_irq();
  656. for (i=1; i <= NUM_ENDPOINTS; i++) {
  657. #ifdef AUDIO_INTERFACE
  658. if (i == AUDIO_RX_ENDPOINT) continue;
  659. #endif
  660. if (*cfg++ & USB_ENDPT_EPRXEN) {
  661. if (table[index(i, RX, EVEN)].desc == 0) {
  662. table[index(i, RX, EVEN)].addr = packet->buf;
  663. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  664. usb_rx_memory_needed--;
  665. __enable_irq();
  666. //serial_phex(i);
  667. //serial_print(",even\n");
  668. return;
  669. }
  670. if (table[index(i, RX, ODD)].desc == 0) {
  671. table[index(i, RX, ODD)].addr = packet->buf;
  672. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  673. usb_rx_memory_needed--;
  674. __enable_irq();
  675. //serial_phex(i);
  676. //serial_print(",odd\n");
  677. return;
  678. }
  679. }
  680. }
  681. __enable_irq();
  682. // we should never reach this point. If we get here, it means
  683. // usb_rx_memory_needed was set greater than zero, but no memory
  684. // was actually needed.
  685. usb_rx_memory_needed = 0;
  686. usb_free(packet);
  687. return;
  688. }
  689. //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  690. //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  691. void usb_tx(uint32_t endpoint, usb_packet_t *packet)
  692. {
  693. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  694. uint8_t next;
  695. endpoint--;
  696. if (endpoint >= NUM_ENDPOINTS) return;
  697. __disable_irq();
  698. //serial_print("txstate=");
  699. //serial_phex(tx_state[endpoint]);
  700. //serial_print("\n");
  701. switch (tx_state[endpoint]) {
  702. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  703. next = TX_STATE_ODD_FREE;
  704. break;
  705. case TX_STATE_BOTH_FREE_ODD_FIRST:
  706. b++;
  707. next = TX_STATE_EVEN_FREE;
  708. break;
  709. case TX_STATE_EVEN_FREE:
  710. next = TX_STATE_NONE_FREE_ODD_FIRST;
  711. break;
  712. case TX_STATE_ODD_FREE:
  713. b++;
  714. next = TX_STATE_NONE_FREE_EVEN_FIRST;
  715. break;
  716. default:
  717. if (tx_first[endpoint] == NULL) {
  718. tx_first[endpoint] = packet;
  719. } else {
  720. tx_last[endpoint]->next = packet;
  721. }
  722. tx_last[endpoint] = packet;
  723. __enable_irq();
  724. return;
  725. }
  726. tx_state[endpoint] = next;
  727. b->addr = packet->buf;
  728. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  729. __enable_irq();
  730. }
  731. void usb_tx_isochronous(uint32_t endpoint, void *data, uint32_t len)
  732. {
  733. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  734. uint8_t next, state;
  735. endpoint--;
  736. if (endpoint >= NUM_ENDPOINTS) return;
  737. __disable_irq();
  738. state = tx_state[endpoint];
  739. if (state == 0) {
  740. next = 1;
  741. } else {
  742. b++;
  743. next = 0;
  744. }
  745. tx_state[endpoint] = next;
  746. b->addr = data;
  747. b->desc = (len << 16) | BDT_OWN;
  748. __enable_irq();
  749. }
  750. void _reboot_Teensyduino_(void)
  751. {
  752. // TODO: initialize R0 with a code....
  753. __asm__ volatile("bkpt");
  754. }
  755. void usb_isr(void)
  756. {
  757. uint8_t status, stat, t;
  758. //serial_print("isr");
  759. //status = USB0_ISTAT;
  760. //serial_phex(status);
  761. //serial_print("\n");
  762. restart:
  763. status = USB0_ISTAT;
  764. if ((status & USB_ISTAT_SOFTOK /* 04 */ )) {
  765. if (usb_configuration) {
  766. t = usb_reboot_timer;
  767. if (t) {
  768. usb_reboot_timer = --t;
  769. if (!t) _reboot_Teensyduino_();
  770. }
  771. #ifdef CDC_DATA_INTERFACE
  772. t = usb_cdc_transmit_flush_timer;
  773. if (t) {
  774. usb_cdc_transmit_flush_timer = --t;
  775. if (t == 0) usb_serial_flush_callback();
  776. }
  777. #endif
  778. #ifdef SEREMU_INTERFACE
  779. t = usb_seremu_transmit_flush_timer;
  780. if (t) {
  781. usb_seremu_transmit_flush_timer = --t;
  782. if (t == 0) usb_seremu_flush_callback();
  783. }
  784. #endif
  785. #ifdef MIDI_INTERFACE
  786. usb_midi_flush_output();
  787. #endif
  788. #ifdef FLIGHTSIM_INTERFACE
  789. usb_flightsim_flush_callback();
  790. #endif
  791. }
  792. USB0_ISTAT = USB_ISTAT_SOFTOK;
  793. }
  794. if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
  795. uint8_t endpoint;
  796. stat = USB0_STAT;
  797. //serial_print("token: ep=");
  798. //serial_phex(stat >> 4);
  799. //serial_print(stat & 0x08 ? ",tx" : ",rx");
  800. //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
  801. endpoint = stat >> 4;
  802. if (endpoint == 0) {
  803. usb_control(stat);
  804. } else {
  805. bdt_t *b = stat2bufferdescriptor(stat);
  806. usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
  807. #if 0
  808. serial_print("ep:");
  809. serial_phex(endpoint);
  810. serial_print(", pid:");
  811. serial_phex(BDT_PID(b->desc));
  812. serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
  813. serial_print(", count:");
  814. serial_phex(b->desc >> 16);
  815. serial_print("\n");
  816. #endif
  817. endpoint--; // endpoint is index to zero-based arrays
  818. #ifdef AUDIO_INTERFACE
  819. if ((endpoint == AUDIO_TX_ENDPOINT-1) && (stat & 0x08)) {
  820. unsigned int len;
  821. len = usb_audio_transmit_callback();
  822. if (len > 0) {
  823. b = (bdt_t *)((uint32_t)b ^ 8);
  824. b->addr = usb_audio_transmit_buffer;
  825. b->desc = (len << 16) | BDT_OWN;
  826. tx_state[endpoint] ^= 1;
  827. }
  828. } else if ((endpoint == AUDIO_RX_ENDPOINT-1) && !(stat & 0x08)) {
  829. usb_audio_receive_callback(b->desc >> 16);
  830. b->addr = usb_audio_receive_buffer;
  831. b->desc = (AUDIO_RX_SIZE << 16) | BDT_OWN;
  832. } else if ((endpoint == AUDIO_SYNC_ENDPOINT-1) && (stat & 0x08)) {
  833. b = (bdt_t *)((uint32_t)b ^ 8);
  834. b->addr = &usb_audio_sync_feedback;
  835. b->desc = (3 << 16) | BDT_OWN;
  836. tx_state[endpoint] ^= 1;
  837. } else
  838. #endif
  839. if (stat & 0x08) { // transmit
  840. usb_free(packet);
  841. packet = tx_first[endpoint];
  842. if (packet) {
  843. //serial_print("tx packet\n");
  844. tx_first[endpoint] = packet->next;
  845. b->addr = packet->buf;
  846. switch (tx_state[endpoint]) {
  847. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  848. tx_state[endpoint] = TX_STATE_ODD_FREE;
  849. break;
  850. case TX_STATE_BOTH_FREE_ODD_FIRST:
  851. tx_state[endpoint] = TX_STATE_EVEN_FREE;
  852. break;
  853. case TX_STATE_EVEN_FREE:
  854. tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
  855. break;
  856. case TX_STATE_ODD_FREE:
  857. tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
  858. break;
  859. default:
  860. break;
  861. }
  862. b->desc = BDT_DESC(packet->len,
  863. ((uint32_t)b & 8) ? DATA1 : DATA0);
  864. } else {
  865. //serial_print("tx no packet\n");
  866. switch (tx_state[endpoint]) {
  867. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  868. case TX_STATE_BOTH_FREE_ODD_FIRST:
  869. break;
  870. case TX_STATE_EVEN_FREE:
  871. tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  872. break;
  873. case TX_STATE_ODD_FREE:
  874. tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
  875. break;
  876. default:
  877. tx_state[endpoint] = ((uint32_t)b & 8) ?
  878. TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
  879. break;
  880. }
  881. }
  882. } else { // receive
  883. packet->len = b->desc >> 16;
  884. if (packet->len > 0) {
  885. packet->index = 0;
  886. packet->next = NULL;
  887. if (rx_first[endpoint] == NULL) {
  888. //serial_print("rx 1st, epidx=");
  889. //serial_phex(endpoint);
  890. //serial_print(", packet=");
  891. //serial_phex32((uint32_t)packet);
  892. //serial_print("\n");
  893. rx_first[endpoint] = packet;
  894. } else {
  895. //serial_print("rx Nth, epidx=");
  896. //serial_phex(endpoint);
  897. //serial_print(", packet=");
  898. //serial_phex32((uint32_t)packet);
  899. //serial_print("\n");
  900. rx_last[endpoint]->next = packet;
  901. }
  902. rx_last[endpoint] = packet;
  903. usb_rx_byte_count_data[endpoint] += packet->len;
  904. // TODO: implement a per-endpoint maximum # of allocated
  905. // packets, so a flood of incoming data on 1 endpoint
  906. // doesn't starve the others if the user isn't reading
  907. // it regularly
  908. packet = usb_malloc();
  909. if (packet) {
  910. b->addr = packet->buf;
  911. b->desc = BDT_DESC(64,
  912. ((uint32_t)b & 8) ? DATA1 : DATA0);
  913. } else {
  914. //serial_print("starving ");
  915. //serial_phex(endpoint + 1);
  916. b->desc = 0;
  917. usb_rx_memory_needed++;
  918. }
  919. } else {
  920. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  921. }
  922. }
  923. }
  924. USB0_ISTAT = USB_ISTAT_TOKDNE;
  925. goto restart;
  926. }
  927. if (status & USB_ISTAT_USBRST /* 01 */ ) {
  928. //serial_print("reset\n");
  929. // initialize BDT toggle bits
  930. USB0_CTL = USB_CTL_ODDRST;
  931. ep0_tx_bdt_bank = 0;
  932. // set up buffers to receive Setup and OUT packets
  933. table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
  934. table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
  935. table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
  936. table[index(0, RX, ODD)].addr = ep0_rx1_buf;
  937. table[index(0, TX, EVEN)].desc = 0;
  938. table[index(0, TX, ODD)].desc = 0;
  939. // activate endpoint 0
  940. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  941. // clear all ending interrupts
  942. USB0_ERRSTAT = 0xFF;
  943. USB0_ISTAT = 0xFF;
  944. // set the address to zero during enumeration
  945. USB0_ADDR = 0;
  946. // enable other interrupts
  947. USB0_ERREN = 0xFF;
  948. USB0_INTEN = USB_INTEN_TOKDNEEN |
  949. USB_INTEN_SOFTOKEN |
  950. USB_INTEN_STALLEN |
  951. USB_INTEN_ERROREN |
  952. USB_INTEN_USBRSTEN |
  953. USB_INTEN_SLEEPEN;
  954. // is this necessary?
  955. USB0_CTL = USB_CTL_USBENSOFEN;
  956. return;
  957. }
  958. if ((status & USB_ISTAT_STALL /* 80 */ )) {
  959. //serial_print("stall:\n");
  960. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  961. USB0_ISTAT = USB_ISTAT_STALL;
  962. }
  963. if ((status & USB_ISTAT_ERROR /* 02 */ )) {
  964. uint8_t err = USB0_ERRSTAT;
  965. USB0_ERRSTAT = err;
  966. //serial_print("err:");
  967. //serial_phex(err);
  968. //serial_print("\n");
  969. USB0_ISTAT = USB_ISTAT_ERROR;
  970. }
  971. if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
  972. //serial_print("sleep\n");
  973. USB0_ISTAT = USB_ISTAT_SLEEP;
  974. }
  975. }
  976. void usb_init(void)
  977. {
  978. int i;
  979. //serial_begin(BAUD2DIV(115200));
  980. //serial_print("usb_init\n");
  981. usb_init_serialnumber();
  982. for (i=0; i <= NUM_ENDPOINTS*4; i++) {
  983. table[i].desc = 0;
  984. table[i].addr = 0;
  985. }
  986. // this basically follows the flowchart in the Kinetis
  987. // Quick Reference User Guide, Rev. 1, 03/2012, page 141
  988. // assume 48 MHz clock already running
  989. // SIM - enable clock
  990. SIM_SCGC4 |= SIM_SCGC4_USBOTG;
  991. #ifdef HAS_KINETIS_MPU
  992. MPU_RGDAAC0 |= 0x03000000;
  993. #endif
  994. // reset USB module
  995. //USB0_USBTRC0 = USB_USBTRC_USBRESET;
  996. //while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
  997. // set desc table base addr
  998. USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
  999. USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
  1000. USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
  1001. // clear all ISR flags
  1002. USB0_ISTAT = 0xFF;
  1003. USB0_ERRSTAT = 0xFF;
  1004. USB0_OTGISTAT = 0xFF;
  1005. //USB0_USBTRC0 |= 0x40; // undocumented bit
  1006. // enable USB
  1007. USB0_CTL = USB_CTL_USBENSOFEN;
  1008. USB0_USBCTRL = 0;
  1009. // enable reset interrupt
  1010. USB0_INTEN = USB_INTEN_USBRSTEN;
  1011. // enable interrupt in NVIC...
  1012. NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
  1013. NVIC_ENABLE_IRQ(IRQ_USBOTG);
  1014. // enable d+ pullup
  1015. USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
  1016. }
  1017. #else // F_CPU < 20 MHz && defined(NUM_ENDPOINTS)
  1018. void usb_init(void)
  1019. {
  1020. }
  1021. #endif // F_CPU >= 20 MHz && defined(NUM_ENDPOINTS)