You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 9 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. #include <stddef.h>
  34. ////////////////////////////////////////////////////////////////
  35. // Tunable parameters (relatively safe to edit these numbers)
  36. ////////////////////////////////////////////////////////////////
  37. #ifndef SERIAL2_TX_BUFFER_SIZE
  38. #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  39. #endif
  40. #ifndef SERIAL2_RX_BUFFER_SIZE
  41. #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  42. #endif
  43. #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  44. #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  45. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  46. ////////////////////////////////////////////////////////////////
  47. // changes not recommended below this point....
  48. ////////////////////////////////////////////////////////////////
  49. #ifdef SERIAL_9BIT_SUPPORT
  50. static uint8_t use9Bits = 0;
  51. #define BUFTYPE uint16_t
  52. #else
  53. #define BUFTYPE uint8_t
  54. #define use9Bits 0
  55. #endif
  56. static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
  57. static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
  58. static volatile BUFTYPE *rx_buffer_storage_ = NULL;
  59. static volatile BUFTYPE *tx_buffer_storage_ = NULL;
  60. static size_t tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE;
  61. static size_t rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE;
  62. static size_t rts_low_watermark_ = RTS_LOW_WATERMARK;
  63. static size_t rts_high_watermark_ = RTS_HIGH_WATERMARK;
  64. static volatile uint8_t transmitting = 0;
  65. #if defined(KINETISK)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. #define transmit_assert() *transmit_pin = 1
  68. #define transmit_deassert() *transmit_pin = 0
  69. static volatile uint8_t *rts_pin=NULL;
  70. #define rts_assert() *rts_pin = 0
  71. #define rts_deassert() *rts_pin = 1
  72. #elif defined(KINETISL)
  73. static volatile uint8_t *transmit_pin=NULL;
  74. static uint8_t transmit_mask=0;
  75. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  76. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  77. static volatile uint8_t *rts_pin=NULL;
  78. static uint8_t rts_mask=0;
  79. #define rts_assert() *(rts_pin+8) = rts_mask;
  80. #define rts_deassert() *(rts_pin+4) = rts_mask;
  81. #endif
  82. #if SERIAL2_TX_BUFFER_SIZE > 65535
  83. static volatile uint32_t tx_buffer_head = 0;
  84. static volatile uint32_t tx_buffer_tail = 0;
  85. #elif SERIAL2_TX_BUFFER_SIZE > 255
  86. static volatile uint16_t tx_buffer_head = 0;
  87. static volatile uint16_t tx_buffer_tail = 0;
  88. #else
  89. static volatile uint8_t tx_buffer_head = 0;
  90. static volatile uint8_t tx_buffer_tail = 0;
  91. #endif
  92. #if SERIAL2_RX_BUFFER_SIZE > 65535
  93. static volatile uint32_t rx_buffer_head = 0;
  94. static volatile uint32_t rx_buffer_tail = 0;
  95. #elif SERIAL2_RX_BUFFER_SIZE > 255
  96. static volatile uint16_t rx_buffer_head = 0;
  97. static volatile uint16_t rx_buffer_tail = 0;
  98. #else
  99. static volatile uint8_t rx_buffer_head = 0;
  100. static volatile uint8_t rx_buffer_tail = 0;
  101. #endif
  102. #if defined(KINETISK)
  103. static uint8_t rx_pin_num = 9;
  104. static uint8_t tx_pin_num = 10;
  105. #endif
  106. #if defined(KINETISL)
  107. static uint8_t half_duplex_mode = 0;
  108. #endif
  109. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  110. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  111. #ifdef HAS_KINETISK_UART1_FIFO
  112. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  113. #else
  114. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  115. #endif
  116. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  117. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  118. #define C2_TX_INACTIVE C2_ENABLE
  119. // BITBAND Support
  120. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  121. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  122. #define C3_TXDIR_BIT 5
  123. void serial2_begin(uint32_t divisor)
  124. {
  125. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  126. rx_buffer_head = 0;
  127. rx_buffer_tail = 0;
  128. tx_buffer_head = 0;
  129. tx_buffer_tail = 0;
  130. transmitting = 0;
  131. #if defined(KINETISK)
  132. switch (rx_pin_num) {
  133. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  134. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  135. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  136. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  137. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  138. #endif
  139. }
  140. switch (tx_pin_num) {
  141. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  142. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  143. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  144. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  145. case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  146. #endif
  147. }
  148. #elif defined(KINETISL)
  149. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  150. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  151. #endif
  152. #if defined(HAS_KINETISK_UART1)
  153. if (divisor < 32) divisor = 32;
  154. UART1_BDH = (divisor >> 13) & 0x1F;
  155. UART1_BDL = (divisor >> 5) & 0xFF;
  156. UART1_C4 = divisor & 0x1F;
  157. #ifdef HAS_KINETISK_UART1_FIFO
  158. UART1_C1 = UART_C1_ILT;
  159. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  160. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  161. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  162. #else
  163. UART1_C1 = 0;
  164. UART1_PFIFO = 0;
  165. #endif
  166. #elif defined(HAS_KINETISL_UART1)
  167. if (divisor < 1) divisor = 1;
  168. UART1_BDH = (divisor >> 8) & 0x1F;
  169. UART1_BDL = divisor & 0xFF;
  170. UART1_C1 = 0;
  171. #endif
  172. UART1_C2 = C2_TX_INACTIVE;
  173. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  174. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  175. }
  176. void serial2_format(uint32_t format)
  177. {
  178. uint8_t c;
  179. c = UART1_C1;
  180. c = (c & ~0x13) | (format & 0x03); // configure parity
  181. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  182. UART1_C1 = c;
  183. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  184. c = UART1_S2 & ~0x10;
  185. if (format & 0x10) c |= 0x10; // rx invert
  186. UART1_S2 = c;
  187. c = UART1_C3 & ~0x10;
  188. if (format & 0x20) c |= 0x10; // tx invert
  189. UART1_C3 = c;
  190. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  191. c = UART1_C4 & 0x1F;
  192. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  193. UART1_C4 = c;
  194. use9Bits = format & 0x80;
  195. #endif
  196. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  197. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  198. if ( format & 0x100) {
  199. uint8_t bdl = UART1_BDL;
  200. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  201. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  202. }
  203. #endif
  204. // process request for half duplex.
  205. if ((format & SERIAL_HALF_DUPLEX) != 0) {
  206. c = UART1_C1;
  207. c |= UART_C1_LOOPS | UART_C1_RSRC;
  208. UART1_C1 = c;
  209. // Lets try to make use of bitband address to set the direction for ue...
  210. #if defined(KINETISL)
  211. //CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  212. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  213. half_duplex_mode = 1;
  214. #else
  215. volatile uint32_t *reg = portConfigRegister(tx_pin_num);
  216. *reg = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; // pullup on output pin;
  217. transmit_pin = (uint8_t*)GPIO_BITBAND_PTR(UART1_C3, C3_TXDIR_BIT);
  218. #endif
  219. } else {
  220. #if defined(KINETISL)
  221. half_duplex_mode = 0;
  222. #else
  223. if (transmit_pin == (uint8_t*)GPIO_BITBAND_PTR(UART1_C3, C3_TXDIR_BIT)) transmit_pin = NULL;
  224. #endif
  225. }
  226. }
  227. void serial2_end(void)
  228. {
  229. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  230. while (transmitting) yield(); // wait for buffered data to send
  231. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  232. UART1_C2 = 0;
  233. #if defined(KINETISK)
  234. switch (rx_pin_num) {
  235. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  236. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  237. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  238. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  239. case 59: CORE_PIN59_CONFIG = 0; break;
  240. #endif
  241. }
  242. switch (tx_pin_num & 127) {
  243. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  244. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  245. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  246. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  247. case 58: CORE_PIN58_CONFIG = 0; break;
  248. #endif
  249. }
  250. #elif defined(KINETISL)
  251. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  252. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  253. #endif
  254. UART1_S1;
  255. UART1_D; // clear leftover error status
  256. rx_buffer_head = 0;
  257. rx_buffer_tail = 0;
  258. if (rts_pin) rts_deassert();
  259. }
  260. void serial2_set_transmit_pin(uint8_t pin)
  261. {
  262. while (transmitting) ;
  263. pinMode(pin, OUTPUT);
  264. digitalWrite(pin, LOW);
  265. transmit_pin = portOutputRegister(pin);
  266. #if defined(KINETISL)
  267. transmit_mask = digitalPinToBitMask(pin);
  268. #endif
  269. }
  270. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  271. {
  272. #if defined(KINETISK)
  273. uint32_t cfg;
  274. if (opendrain) pin |= 128;
  275. if (pin == tx_pin_num) return;
  276. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  277. switch (tx_pin_num & 127) {
  278. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  279. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  280. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  281. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  282. case 58: CORE_PIN58_CONFIG = 0; break;
  283. #endif
  284. }
  285. if (opendrain) {
  286. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  287. } else {
  288. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  289. }
  290. switch (pin & 127) {
  291. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  292. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  293. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  294. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  295. case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
  296. #endif
  297. }
  298. }
  299. tx_pin_num = pin;
  300. #endif
  301. }
  302. void serial2_set_rx(uint8_t pin)
  303. {
  304. #if defined(KINETISK)
  305. if (pin == rx_pin_num) return;
  306. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  307. switch (rx_pin_num) {
  308. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  309. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  310. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  311. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  312. case 59: CORE_PIN59_CONFIG = 0; break;
  313. #endif
  314. }
  315. switch (pin) {
  316. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  317. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  318. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  319. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  320. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  321. #endif
  322. }
  323. }
  324. rx_pin_num = pin;
  325. #endif
  326. }
  327. int serial2_set_rts(uint8_t pin)
  328. {
  329. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  330. if (pin < CORE_NUM_DIGITAL) {
  331. rts_pin = portOutputRegister(pin);
  332. #if defined(KINETISL)
  333. rts_mask = digitalPinToBitMask(pin);
  334. #endif
  335. pinMode(pin, OUTPUT);
  336. rts_assert();
  337. } else {
  338. rts_pin = NULL;
  339. return 0;
  340. }
  341. /*
  342. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  343. if (pin == 22) {
  344. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  345. } else {
  346. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  347. return 0;
  348. }
  349. UART1_MODEM |= UART_MODEM_RXRTSE;
  350. */
  351. return 1;
  352. }
  353. int serial2_set_cts(uint8_t pin)
  354. {
  355. #if defined(KINETISK)
  356. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  357. if (pin == 23) {
  358. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  359. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
  360. } else if (pin == 60) {
  361. CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  362. #endif
  363. } else {
  364. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  365. return 0;
  366. }
  367. UART1_MODEM |= UART_MODEM_TXCTSE;
  368. return 1;
  369. #else
  370. return 0;
  371. #endif
  372. }
  373. void serial2_putchar(uint32_t c)
  374. {
  375. uint32_t head, n;
  376. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  377. if (transmit_pin) transmit_assert();
  378. #if defined(KINETISL)
  379. if (half_duplex_mode) {
  380. __disable_irq();
  381. volatile uint32_t reg = UART1_C3;
  382. reg |= UART_C3_TXDIR;
  383. UART1_C3 = reg;
  384. __enable_irq();
  385. }
  386. #endif
  387. head = tx_buffer_head;
  388. if (++head >= tx_buffer_total_size_) head = 0;
  389. while (tx_buffer_tail == head) {
  390. int priority = nvic_execution_priority();
  391. if (priority <= IRQ_PRIORITY) {
  392. if ((UART1_S1 & UART_S1_TDRE)) {
  393. uint32_t tail = tx_buffer_tail;
  394. if (++tail >= tx_buffer_total_size_) tail = 0;
  395. if (tail < SERIAL2_TX_BUFFER_SIZE) {
  396. n = tx_buffer[tail];
  397. } else {
  398. n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE];
  399. }
  400. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  401. UART1_D = n;
  402. tx_buffer_tail = tail;
  403. }
  404. } else if (priority >= 256) {
  405. yield(); // wait
  406. }
  407. }
  408. if (head < SERIAL2_TX_BUFFER_SIZE) {
  409. tx_buffer[head] = c;
  410. } else {
  411. tx_buffer_storage_[head - SERIAL2_TX_BUFFER_SIZE] = c;
  412. }
  413. transmitting = 1;
  414. tx_buffer_head = head;
  415. UART1_C2 = C2_TX_ACTIVE;
  416. }
  417. #ifdef HAS_KINETISK_UART1_FIFO
  418. void serial2_write(const void *buf, unsigned int count)
  419. {
  420. const uint8_t *p = (const uint8_t *)buf;
  421. const uint8_t *end = p + count;
  422. uint32_t head, n;
  423. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  424. if (transmit_pin) transmit_assert();
  425. while (p < end) {
  426. head = tx_buffer_head;
  427. if (++head >= tx_buffer_total_size_) head = 0;
  428. if (tx_buffer_tail == head) {
  429. UART1_C2 = C2_TX_ACTIVE;
  430. do {
  431. int priority = nvic_execution_priority();
  432. if (priority <= IRQ_PRIORITY) {
  433. if ((UART1_S1 & UART_S1_TDRE)) {
  434. uint32_t tail = tx_buffer_tail;
  435. if (++tail >= tx_buffer_total_size_) tail = 0;
  436. if (tail < SERIAL2_TX_BUFFER_SIZE) {
  437. n = tx_buffer[tail];
  438. } else {
  439. n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE];
  440. }
  441. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  442. UART1_D = n;
  443. tx_buffer_tail = tail;
  444. }
  445. } else if (priority >= 256) {
  446. yield();
  447. }
  448. } while (tx_buffer_tail == head);
  449. }
  450. if (head < SERIAL2_TX_BUFFER_SIZE) {
  451. tx_buffer[head] = *p++;
  452. } else {
  453. tx_buffer_storage_[head - SERIAL2_TX_BUFFER_SIZE] = *p++;
  454. }
  455. transmitting = 1;
  456. tx_buffer_head = head;
  457. }
  458. UART1_C2 = C2_TX_ACTIVE;
  459. }
  460. #else
  461. void serial2_write(const void *buf, unsigned int count)
  462. {
  463. const uint8_t *p = (const uint8_t *)buf;
  464. while (count-- > 0) serial2_putchar(*p++);
  465. }
  466. #endif
  467. void serial2_flush(void)
  468. {
  469. while (transmitting) yield(); // wait
  470. }
  471. int serial2_write_buffer_free(void)
  472. {
  473. uint32_t head, tail;
  474. head = tx_buffer_head;
  475. tail = tx_buffer_tail;
  476. if (head >= tail) return tx_buffer_total_size_ - 1 - head + tail;
  477. return tail - head - 1;
  478. }
  479. int serial2_available(void)
  480. {
  481. uint32_t head, tail;
  482. head = rx_buffer_head;
  483. tail = rx_buffer_tail;
  484. if (head >= tail) return head - tail;
  485. return rx_buffer_total_size_ + head - tail;
  486. }
  487. int serial2_getchar(void)
  488. {
  489. uint32_t head, tail;
  490. int c;
  491. head = rx_buffer_head;
  492. tail = rx_buffer_tail;
  493. if (head == tail) return -1;
  494. if (++tail >= rx_buffer_total_size_) tail = 0;
  495. if (tail < SERIAL2_RX_BUFFER_SIZE) {
  496. c = rx_buffer[tail];
  497. } else {
  498. c = rx_buffer_storage_[tail-SERIAL2_RX_BUFFER_SIZE];
  499. }
  500. rx_buffer_tail = tail;
  501. if (rts_pin) {
  502. int avail;
  503. if (head >= tail) avail = head - tail;
  504. else avail = rx_buffer_total_size_ + head - tail;
  505. if (avail <= rts_low_watermark_) rts_assert();
  506. }
  507. return c;
  508. }
  509. int serial2_peek(void)
  510. {
  511. uint32_t head, tail;
  512. head = rx_buffer_head;
  513. tail = rx_buffer_tail;
  514. if (head == tail) return -1;
  515. if (++tail >= rx_buffer_total_size_) tail = 0;
  516. if (tail < SERIAL2_RX_BUFFER_SIZE) {
  517. return rx_buffer[tail];
  518. }
  519. return rx_buffer_storage_[tail-SERIAL2_RX_BUFFER_SIZE];
  520. }
  521. void serial2_clear(void)
  522. {
  523. #ifdef HAS_KINETISK_UART1_FIFO
  524. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  525. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  526. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  527. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  528. #endif
  529. rx_buffer_head = rx_buffer_tail;
  530. if (rts_pin) rts_assert();
  531. }
  532. // status interrupt combines
  533. // Transmit data below watermark UART_S1_TDRE
  534. // Transmit complete UART_S1_TC
  535. // Idle line UART_S1_IDLE
  536. // Receive data above watermark UART_S1_RDRF
  537. // LIN break detect UART_S2_LBKDIF
  538. // RxD pin active edge UART_S2_RXEDGIF
  539. void uart1_status_isr(void)
  540. {
  541. uint32_t head, tail, n;
  542. uint8_t c;
  543. #ifdef HAS_KINETISK_UART1_FIFO
  544. uint32_t newhead;
  545. uint8_t avail;
  546. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  547. __disable_irq();
  548. avail = UART1_RCFIFO;
  549. if (avail == 0) {
  550. // The only way to clear the IDLE interrupt flag is
  551. // to read the data register. But reading with no
  552. // data causes a FIFO underrun, which causes the
  553. // FIFO to return corrupted data. If anyone from
  554. // Freescale reads this, what a poor design! There
  555. // write should be a write-1-to-clear for IDLE.
  556. c = UART1_D;
  557. // flushing the fifo recovers from the underrun,
  558. // but there's a possible race condition where a
  559. // new character could be received between reading
  560. // RCFIFO == 0 and flushing the FIFO. To minimize
  561. // the chance, interrupts are disabled so a higher
  562. // priority interrupt (hopefully) doesn't delay.
  563. // TODO: change this to disabling the IDLE interrupt
  564. // which won't be simple, since we already manage
  565. // which transmit interrupts are enabled.
  566. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  567. __enable_irq();
  568. } else {
  569. __enable_irq();
  570. head = rx_buffer_head;
  571. tail = rx_buffer_tail;
  572. do {
  573. if (use9Bits && (UART1_C3 & 0x80)) {
  574. n = UART1_D | 0x100;
  575. } else {
  576. n = UART1_D;
  577. }
  578. newhead = head + 1;
  579. if (newhead >= rx_buffer_total_size_) newhead = 0;
  580. if (newhead != tail) {
  581. head = newhead;
  582. if (newhead < SERIAL2_RX_BUFFER_SIZE) {
  583. rx_buffer[head] = n;
  584. } else {
  585. rx_buffer_storage_[head-SERIAL2_RX_BUFFER_SIZE] = n;
  586. }
  587. }
  588. } while (--avail > 0);
  589. rx_buffer_head = head;
  590. if (rts_pin) {
  591. int avail;
  592. if (head >= tail) avail = head - tail;
  593. else avail = rx_buffer_total_size_ + head - tail;
  594. if (avail >= rts_high_watermark_) rts_deassert();
  595. }
  596. }
  597. }
  598. c = UART1_C2;
  599. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  600. head = tx_buffer_head;
  601. tail = tx_buffer_tail;
  602. do {
  603. if (tail == head) break;
  604. if (++tail >= tx_buffer_total_size_) tail = 0;
  605. avail = UART1_S1;
  606. if (tail < SERIAL2_TX_BUFFER_SIZE) {
  607. n = tx_buffer[tail];
  608. } else {
  609. n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE];
  610. }
  611. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  612. UART1_D = n;
  613. } while (UART1_TCFIFO < 8);
  614. tx_buffer_tail = tail;
  615. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  616. }
  617. #else
  618. if (UART1_S1 & UART_S1_RDRF) {
  619. if (use9Bits && (UART1_C3 & 0x80)) {
  620. n = UART1_D | 0x100;
  621. } else {
  622. n = UART1_D;
  623. }
  624. head = rx_buffer_head + 1;
  625. if (head >= rx_buffer_total_size_) head = 0;
  626. if (head != rx_buffer_tail) {
  627. if (head < SERIAL2_RX_BUFFER_SIZE) {
  628. rx_buffer[head] = n;
  629. } else {
  630. rx_buffer_storage_[head-SERIAL2_RX_BUFFER_SIZE] = n;
  631. }
  632. rx_buffer_head = head;
  633. }
  634. }
  635. c = UART1_C2;
  636. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  637. head = tx_buffer_head;
  638. tail = tx_buffer_tail;
  639. if (head == tail) {
  640. UART1_C2 = C2_TX_COMPLETING;
  641. } else {
  642. if (++tail >= tx_buffer_total_size_) tail = 0;
  643. if (tail < SERIAL2_TX_BUFFER_SIZE) {
  644. n = tx_buffer[tail];
  645. } else {
  646. n = tx_buffer_storage_[tail-SERIAL2_TX_BUFFER_SIZE];
  647. }
  648. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  649. UART1_D = n;
  650. tx_buffer_tail = tail;
  651. }
  652. }
  653. #endif
  654. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  655. transmitting = 0;
  656. if (transmit_pin) transmit_deassert();
  657. #if defined(KINETISL)
  658. if (half_duplex_mode) {
  659. __disable_irq();
  660. volatile uint32_t reg = UART1_C3;
  661. reg &= ~UART_C3_TXDIR;
  662. UART1_C3 = reg;
  663. __enable_irq();
  664. }
  665. #endif
  666. UART1_C2 = C2_TX_INACTIVE;
  667. }
  668. }
  669. void serial2_add_memory_for_read(void *buffer, size_t length)
  670. {
  671. rx_buffer_storage_ = (BUFTYPE*)buffer;
  672. if (buffer) {
  673. rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE + length;
  674. } else {
  675. rx_buffer_total_size_ = SERIAL2_RX_BUFFER_SIZE;
  676. }
  677. rts_low_watermark_ = RTS_LOW_WATERMARK + length;
  678. rts_high_watermark_ = RTS_HIGH_WATERMARK + length;
  679. }
  680. void serial2_add_memory_for_write(void *buffer, size_t length)
  681. {
  682. tx_buffer_storage_ = (BUFTYPE*)buffer;
  683. if (buffer) {
  684. tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE + length;
  685. } else {
  686. tx_buffer_total_size_ = SERIAL2_TX_BUFFER_SIZE;
  687. }
  688. }