|
|
@@ -0,0 +1,605 @@ |
|
|
|
/* Teensyduino Core Library |
|
|
|
* http://www.pjrc.com/teensy/ |
|
|
|
* Copyright (c) 2017 PJRC.COM, LLC. |
|
|
|
* |
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining |
|
|
|
* a copy of this software and associated documentation files (the |
|
|
|
* "Software"), to deal in the Software without restriction, including |
|
|
|
* without limitation the rights to use, copy, modify, merge, publish, |
|
|
|
* distribute, sublicense, and/or sell copies of the Software, and to |
|
|
|
* permit persons to whom the Software is furnished to do so, subject to |
|
|
|
* the following conditions: |
|
|
|
* |
|
|
|
* 1. The above copyright notice and this permission notice shall be |
|
|
|
* included in all copies or substantial portions of the Software. |
|
|
|
* |
|
|
|
* 2. If the Software is incorporated into a build system that allows |
|
|
|
* selection among a list of target devices, then similar target |
|
|
|
* devices manufactured by PJRC.COM must be included in the list of |
|
|
|
* target devices and selectable in the same manner. |
|
|
|
* |
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
|
|
* SOFTWARE. |
|
|
|
*/ |
|
|
|
|
|
|
|
#ifndef DMAChannel_h_ |
|
|
|
#define DMAChannel_h_ |
|
|
|
|
|
|
|
#include "imxrt.h" |
|
|
|
|
|
|
|
// Discussion about DMAChannel is here: |
|
|
|
// http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 |
|
|
|
|
|
|
|
#define DMACHANNEL_HAS_BEGIN |
|
|
|
#define DMACHANNEL_HAS_BOOLEAN_CTOR |
|
|
|
|
|
|
|
|
|
|
|
// The channel allocation bitmask is accessible from "C" namespace, |
|
|
|
// so C-only code can reserve DMA channels |
|
|
|
#ifdef __cplusplus |
|
|
|
extern "C" { |
|
|
|
#endif |
|
|
|
extern uint16_t dma_channel_allocated_mask; |
|
|
|
#ifdef __cplusplus |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
|
|
// known libraries with DMA usage (in need of porting to this new scheme): |
|
|
|
// |
|
|
|
// https://github.com/PaulStoffregen/Audio |
|
|
|
// https://github.com/PaulStoffregen/OctoWS2811 |
|
|
|
// https://github.com/pedvide/ADC |
|
|
|
// https://github.com/duff2013/SerialEvent |
|
|
|
// https://github.com/pixelmatix/SmartMatrix |
|
|
|
// https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme |
|
|
|
|
|
|
|
|
|
|
|
class DMABaseClass { |
|
|
|
public: |
|
|
|
typedef struct __attribute__((packed, aligned(4))) { |
|
|
|
volatile const void * volatile SADDR; |
|
|
|
int16_t SOFF; |
|
|
|
union { uint16_t ATTR; |
|
|
|
struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; }; |
|
|
|
union { uint32_t NBYTES; uint32_t NBYTES_MLNO; |
|
|
|
uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; }; |
|
|
|
int32_t SLAST; |
|
|
|
volatile void * volatile DADDR; |
|
|
|
int16_t DOFF; |
|
|
|
union { volatile uint16_t CITER; |
|
|
|
volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; }; |
|
|
|
int32_t DLASTSGA; |
|
|
|
volatile uint16_t CSR; |
|
|
|
union { volatile uint16_t BITER; |
|
|
|
volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; }; |
|
|
|
} TCD_t; |
|
|
|
TCD_t *TCD; |
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Data Transfer **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// Use a single variable as the data source. Typically a register |
|
|
|
// for receiving data from one of the hardware peripherals is used. |
|
|
|
void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); } |
|
|
|
void source(volatile const unsigned char &p) { |
|
|
|
TCD->SADDR = &p; |
|
|
|
TCD->SOFF = 0; |
|
|
|
TCD->ATTR_SRC = 0; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; |
|
|
|
TCD->SLAST = 0; |
|
|
|
} |
|
|
|
void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); } |
|
|
|
void source(volatile const unsigned short &p) { |
|
|
|
TCD->SADDR = &p; |
|
|
|
TCD->SOFF = 0; |
|
|
|
TCD->ATTR_SRC = 1; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; |
|
|
|
TCD->SLAST = 0; |
|
|
|
} |
|
|
|
void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
void source(volatile const unsigned long &p) { |
|
|
|
TCD->SADDR = &p; |
|
|
|
TCD->SOFF = 0; |
|
|
|
TCD->ATTR_SRC = 2; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; |
|
|
|
TCD->SLAST = 0; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data source. Typically a |
|
|
|
// buffer for transmitting data is used. |
|
|
|
void sourceBuffer(volatile const signed char p[], unsigned int len) { |
|
|
|
sourceBuffer((volatile const uint8_t *)p, len); } |
|
|
|
void sourceBuffer(volatile const unsigned char p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 1; |
|
|
|
TCD->ATTR_SRC = 0; |
|
|
|
TCD->NBYTES = 1; |
|
|
|
TCD->SLAST = -len; |
|
|
|
TCD->BITER = len; |
|
|
|
TCD->CITER = len; |
|
|
|
} |
|
|
|
void sourceBuffer(volatile const signed short p[], unsigned int len) { |
|
|
|
sourceBuffer((volatile const uint16_t *)p, len); } |
|
|
|
void sourceBuffer(volatile const unsigned short p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 2; |
|
|
|
TCD->ATTR_SRC = 1; |
|
|
|
TCD->NBYTES = 2; |
|
|
|
TCD->SLAST = -len; |
|
|
|
TCD->BITER = len / 2; |
|
|
|
TCD->CITER = len / 2; |
|
|
|
} |
|
|
|
void sourceBuffer(volatile const signed int p[], unsigned int len) { |
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
void sourceBuffer(volatile const unsigned int p[], unsigned int len) { |
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
void sourceBuffer(volatile const signed long p[], unsigned int len) { |
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
void sourceBuffer(volatile const unsigned long p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 4; |
|
|
|
TCD->ATTR_SRC = 2; |
|
|
|
TCD->NBYTES = 4; |
|
|
|
TCD->SLAST = -len; |
|
|
|
TCD->BITER = len / 4; |
|
|
|
TCD->CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a circular buffer as the data source |
|
|
|
void sourceCircular(volatile const signed char p[], unsigned int len) { |
|
|
|
sourceCircular((volatile const uint8_t *)p, len); } |
|
|
|
void sourceCircular(volatile const unsigned char p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 1; |
|
|
|
TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3); |
|
|
|
TCD->NBYTES = 1; |
|
|
|
TCD->SLAST = 0; |
|
|
|
TCD->BITER = len; |
|
|
|
TCD->CITER = len; |
|
|
|
} |
|
|
|
void sourceCircular(volatile const signed short p[], unsigned int len) { |
|
|
|
sourceCircular((volatile const uint16_t *)p, len); } |
|
|
|
void sourceCircular(volatile const unsigned short p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 2; |
|
|
|
TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1; |
|
|
|
TCD->NBYTES = 2; |
|
|
|
TCD->SLAST = 0; |
|
|
|
TCD->BITER = len / 2; |
|
|
|
TCD->CITER = len / 2; |
|
|
|
} |
|
|
|
void sourceCircular(volatile const signed int p[], unsigned int len) { |
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
void sourceCircular(volatile const unsigned int p[], unsigned int len) { |
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
void sourceCircular(volatile const signed long p[], unsigned int len) { |
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
void sourceCircular(volatile const unsigned long p[], unsigned int len) { |
|
|
|
TCD->SADDR = p; |
|
|
|
TCD->SOFF = 4; |
|
|
|
TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2; |
|
|
|
TCD->NBYTES = 4; |
|
|
|
TCD->SLAST = 0; |
|
|
|
TCD->BITER = len / 4; |
|
|
|
TCD->CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a single variable as the data destination. Typically a register |
|
|
|
// for transmitting data to one of the hardware peripherals is used. |
|
|
|
void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); } |
|
|
|
void destination(volatile unsigned char &p) { |
|
|
|
TCD->DADDR = &p; |
|
|
|
TCD->DOFF = 0; |
|
|
|
TCD->ATTR_DST = 0; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
} |
|
|
|
void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); } |
|
|
|
void destination(volatile unsigned short &p) { |
|
|
|
TCD->DADDR = &p; |
|
|
|
TCD->DOFF = 0; |
|
|
|
TCD->ATTR_DST = 1; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
} |
|
|
|
void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
void destination(volatile unsigned long &p) { |
|
|
|
TCD->DADDR = &p; |
|
|
|
TCD->DOFF = 0; |
|
|
|
TCD->ATTR_DST = 2; |
|
|
|
if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data destination. Typically a |
|
|
|
// buffer for receiving data is used. |
|
|
|
void destinationBuffer(volatile signed char p[], unsigned int len) { |
|
|
|
destinationBuffer((volatile uint8_t *)p, len); } |
|
|
|
void destinationBuffer(volatile unsigned char p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 1; |
|
|
|
TCD->ATTR_DST = 0; |
|
|
|
TCD->NBYTES = 1; |
|
|
|
TCD->DLASTSGA = -len; |
|
|
|
TCD->BITER = len; |
|
|
|
TCD->CITER = len; |
|
|
|
} |
|
|
|
void destinationBuffer(volatile signed short p[], unsigned int len) { |
|
|
|
destinationBuffer((volatile uint16_t *)p, len); } |
|
|
|
void destinationBuffer(volatile unsigned short p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 2; |
|
|
|
TCD->ATTR_DST = 1; |
|
|
|
TCD->NBYTES = 2; |
|
|
|
TCD->DLASTSGA = -len; |
|
|
|
TCD->BITER = len / 2; |
|
|
|
TCD->CITER = len / 2; |
|
|
|
} |
|
|
|
void destinationBuffer(volatile signed int p[], unsigned int len) { |
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
void destinationBuffer(volatile unsigned int p[], unsigned int len) { |
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
void destinationBuffer(volatile signed long p[], unsigned int len) { |
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
void destinationBuffer(volatile unsigned long p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 4; |
|
|
|
TCD->ATTR_DST = 2; |
|
|
|
TCD->NBYTES = 4; |
|
|
|
TCD->DLASTSGA = -len; |
|
|
|
TCD->BITER = len / 4; |
|
|
|
TCD->CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a circular buffer as the data destination |
|
|
|
void destinationCircular(volatile signed char p[], unsigned int len) { |
|
|
|
destinationCircular((volatile uint8_t *)p, len); } |
|
|
|
void destinationCircular(volatile unsigned char p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 1; |
|
|
|
TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3); |
|
|
|
TCD->NBYTES = 1; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
TCD->BITER = len; |
|
|
|
TCD->CITER = len; |
|
|
|
} |
|
|
|
void destinationCircular(volatile signed short p[], unsigned int len) { |
|
|
|
destinationCircular((volatile uint16_t *)p, len); } |
|
|
|
void destinationCircular(volatile unsigned short p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 2; |
|
|
|
TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1; |
|
|
|
TCD->NBYTES = 2; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
TCD->BITER = len / 2; |
|
|
|
TCD->CITER = len / 2; |
|
|
|
} |
|
|
|
void destinationCircular(volatile signed int p[], unsigned int len) { |
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
void destinationCircular(volatile unsigned int p[], unsigned int len) { |
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
void destinationCircular(volatile signed long p[], unsigned int len) { |
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
void destinationCircular(volatile unsigned long p[], unsigned int len) { |
|
|
|
TCD->DADDR = p; |
|
|
|
TCD->DOFF = 4; |
|
|
|
TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2; |
|
|
|
TCD->NBYTES = 4; |
|
|
|
TCD->DLASTSGA = 0; |
|
|
|
TCD->BITER = len / 4; |
|
|
|
TCD->CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
/*************************************************/ |
|
|
|
/** Quantity of Data to Transfer **/ |
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
// Set the data size used for each triggered transfer |
|
|
|
void transferSize(unsigned int len) { |
|
|
|
if (len == 16) { |
|
|
|
TCD->NBYTES = 16; |
|
|
|
if (TCD->SOFF != 0) TCD->SOFF = 16; |
|
|
|
if (TCD->DOFF != 0) TCD->DOFF = 16; |
|
|
|
TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0404; |
|
|
|
} else if (len == 4) { |
|
|
|
TCD->NBYTES = 4; |
|
|
|
if (TCD->SOFF != 0) TCD->SOFF = 4; |
|
|
|
if (TCD->DOFF != 0) TCD->DOFF = 4; |
|
|
|
TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202; |
|
|
|
} else if (len == 2) { |
|
|
|
TCD->NBYTES = 2; |
|
|
|
if (TCD->SOFF != 0) TCD->SOFF = 2; |
|
|
|
if (TCD->DOFF != 0) TCD->DOFF = 2; |
|
|
|
TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101; |
|
|
|
} else { |
|
|
|
TCD->NBYTES = 1; |
|
|
|
if (TCD->SOFF != 0) TCD->SOFF = 1; |
|
|
|
if (TCD->DOFF != 0) TCD->DOFF = 1; |
|
|
|
TCD->ATTR = TCD->ATTR & 0xF8F8; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Set the number of transfers (number of triggers until complete) |
|
|
|
void transferCount(unsigned int len) { |
|
|
|
if (!(TCD->BITER & DMA_TCD_BITER_ELINK)) { |
|
|
|
if (len > 32767) return; |
|
|
|
TCD->BITER = len; |
|
|
|
TCD->CITER = len; |
|
|
|
} else { |
|
|
|
if (len > 511) return; |
|
|
|
TCD->BITER = (TCD->BITER & 0xFE00) | len; |
|
|
|
TCD->CITER = (TCD->CITER & 0xFE00) | len; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/*************************************************/ |
|
|
|
/** Special Options / Features **/ |
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
void interruptAtCompletion(void) { |
|
|
|
TCD->CSR |= DMA_TCD_CSR_INTMAJOR; |
|
|
|
} |
|
|
|
|
|
|
|
void interruptAtHalf(void) { |
|
|
|
TCD->CSR |= DMA_TCD_CSR_INTHALF; |
|
|
|
} |
|
|
|
|
|
|
|
void disableOnCompletion(void) { |
|
|
|
TCD->CSR |= DMA_TCD_CSR_DREQ; |
|
|
|
} |
|
|
|
|
|
|
|
void replaceSettingsOnCompletion(const DMABaseClass &settings) { |
|
|
|
TCD->DLASTSGA = (int32_t)(settings.TCD); |
|
|
|
TCD->CSR &= ~DMA_TCD_CSR_DONE; |
|
|
|
TCD->CSR |= DMA_TCD_CSR_ESG; |
|
|
|
} |
|
|
|
|
|
|
|
protected: |
|
|
|
// users should not be able to create instances of DMABaseClass, which |
|
|
|
// require the inheriting class to initialize the TCD pointer. |
|
|
|
DMABaseClass() {} |
|
|
|
|
|
|
|
static inline void copy_tcd(TCD_t *dst, const TCD_t *src) { |
|
|
|
const uint32_t *p = (const uint32_t *)src; |
|
|
|
uint32_t *q = (uint32_t *)dst; |
|
|
|
uint32_t t1, t2, t3, t4; |
|
|
|
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; |
|
|
|
*q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; |
|
|
|
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; |
|
|
|
*q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// DMASetting represents settings stored only in memory, which can be |
|
|
|
// applied to any DMA channel. |
|
|
|
|
|
|
|
class DMASetting : public DMABaseClass { |
|
|
|
public: |
|
|
|
DMASetting() { |
|
|
|
TCD = &tcddata; |
|
|
|
} |
|
|
|
DMASetting(const DMASetting &c) { |
|
|
|
TCD = &tcddata; |
|
|
|
*this = c; |
|
|
|
} |
|
|
|
DMASetting(const DMABaseClass &c) { |
|
|
|
TCD = &tcddata; |
|
|
|
*this = c; |
|
|
|
} |
|
|
|
DMASetting & operator = (const DMABaseClass &rhs) { |
|
|
|
copy_tcd(TCD, rhs.TCD); |
|
|
|
return *this; |
|
|
|
} |
|
|
|
private: |
|
|
|
TCD_t tcddata __attribute__((aligned(32))); |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// DMAChannel reprents an actual DMA channel and its current settings |
|
|
|
|
|
|
|
class DMAChannel : public DMABaseClass { |
|
|
|
public: |
|
|
|
/*************************************************/ |
|
|
|
/** Channel Allocation **/ |
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
DMAChannel() { |
|
|
|
begin(); |
|
|
|
} |
|
|
|
DMAChannel(const DMAChannel &c) { |
|
|
|
TCD = c.TCD; |
|
|
|
channel = c.channel; |
|
|
|
} |
|
|
|
DMAChannel(const DMASetting &c) { |
|
|
|
begin(); |
|
|
|
copy_tcd(TCD, c.TCD); |
|
|
|
} |
|
|
|
DMAChannel(bool allocate) { |
|
|
|
if (allocate) begin(); |
|
|
|
} |
|
|
|
DMAChannel & operator = (const DMAChannel &rhs) { |
|
|
|
if (channel != rhs.channel) { |
|
|
|
release(); |
|
|
|
TCD = rhs.TCD; |
|
|
|
channel = rhs.channel; |
|
|
|
} |
|
|
|
return *this; |
|
|
|
} |
|
|
|
DMAChannel & operator = (const DMASetting &rhs) { |
|
|
|
copy_tcd(TCD, rhs.TCD); |
|
|
|
return *this; |
|
|
|
} |
|
|
|
~DMAChannel() { |
|
|
|
release(); |
|
|
|
} |
|
|
|
void begin(bool force_initialization = false); |
|
|
|
private: |
|
|
|
void release(void); |
|
|
|
|
|
|
|
public: |
|
|
|
/***************************************/ |
|
|
|
/** Triggering **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// Triggers cause the DMA channel to actually move data. Each |
|
|
|
// trigger moves a single data unit, which is typically 8, 16 or |
|
|
|
// 32 bits. If a channel is configured for 200 transfers |
|
|
|
|
|
|
|
// Use a hardware trigger to make the DMA channel run |
|
|
|
void triggerAtHardwareEvent(uint8_t source) { |
|
|
|
volatile uint32_t *mux = &DMAMUX_CHCFG0 + channel; |
|
|
|
//mux = (volatile uint32_t *)&(DMAMUX_CHCFG0) + channel; |
|
|
|
*mux = 0; |
|
|
|
*mux = (source & 0x7F) | DMAMUX_CHCFG_ENBL; |
|
|
|
} |
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger after each transfer is makes, except |
|
|
|
// the its last transfer. This effectively makes the 2 |
|
|
|
// channels run in parallel until the last transfer |
|
|
|
void triggerAtTransfersOf(DMABaseClass &ch) { |
|
|
|
ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK) |
|
|
|
| DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK; |
|
|
|
ch.TCD->CITER = ch.TCD->BITER ; |
|
|
|
} |
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger when the other channel completes. |
|
|
|
void triggerAtCompletionOf(DMABaseClass &ch) { |
|
|
|
ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE)) |
|
|
|
| DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK; |
|
|
|
} |
|
|
|
|
|
|
|
// Cause this DMA channel to be continuously triggered, so |
|
|
|
// it will move data as rapidly as possible, without waiting. |
|
|
|
// Normally this would be used with disableOnCompletion(). |
|
|
|
void triggerContinuously(void) { |
|
|
|
// TODO: update this for IMXRT. On Kinetis, a small handful |
|
|
|
// of DMAMUX slots were dedicated to "always on". On IMXRT, |
|
|
|
// all of them can work as "always on" by setting their |
|
|
|
// DMAMUX_CHCFG_A_ON bit. |
|
|
|
#if 0 |
|
|
|
volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0; |
|
|
|
mux[channel] = 0; |
|
|
|
#if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS |
|
|
|
mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel; |
|
|
|
#else |
|
|
|
// search for an unused "always on" source |
|
|
|
unsigned int i = DMAMUX_SOURCE_ALWAYS0; |
|
|
|
for (i = DMAMUX_SOURCE_ALWAYS0; |
|
|
|
i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) { |
|
|
|
unsigned int ch; |
|
|
|
for (ch=0; ch < DMA_NUM_CHANNELS; ch++) { |
|
|
|
if (mux[ch] == i) break; |
|
|
|
} |
|
|
|
if (ch >= DMA_NUM_CHANNELS) { |
|
|
|
mux[channel] = (i | DMAMUX_ENABLE); |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
// Manually trigger the DMA channel. |
|
|
|
void triggerManual(void) { |
|
|
|
DMA_SSRT = channel; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Interrupts **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// An interrupt routine can be run when the DMA channel completes |
|
|
|
// the entire transfer, and also optionally when half of the |
|
|
|
// transfer is completed. |
|
|
|
void attachInterrupt(void (*isr)(void)) { |
|
|
|
_VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
} |
|
|
|
|
|
|
|
void detachInterrupt(void) { |
|
|
|
NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
} |
|
|
|
|
|
|
|
void clearInterrupt(void) { |
|
|
|
DMA_CINT = channel; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Enable / Disable **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
void enable(void) { |
|
|
|
DMA_SERQ = channel; |
|
|
|
} |
|
|
|
void disable(void) { |
|
|
|
DMA_CERQ = channel; |
|
|
|
} |
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Status **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
bool complete(void) { |
|
|
|
if (TCD->CSR & DMA_TCD_CSR_DONE) return true; |
|
|
|
return false; |
|
|
|
} |
|
|
|
void clearComplete(void) { |
|
|
|
DMA_CDNE = channel; |
|
|
|
} |
|
|
|
bool error(void) { |
|
|
|
if (DMA_ERR & (1<<channel)) return true; |
|
|
|
return false; |
|
|
|
} |
|
|
|
void clearError(void) { |
|
|
|
DMA_CERR = channel; |
|
|
|
} |
|
|
|
void * sourceAddress(void) { |
|
|
|
return (void *)(TCD->SADDR); |
|
|
|
} |
|
|
|
void * destinationAddress(void) { |
|
|
|
return (void *)(TCD->DADDR); |
|
|
|
} |
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Direct Hardware Access **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// For complex and unusual configurations not possible with the above |
|
|
|
// functions, the Transfer Control Descriptor (TCD) and channel number |
|
|
|
// can be used directly. This leads to less portable and less readable |
|
|
|
// code, but direct control of all parameters is possible. |
|
|
|
uint8_t channel; |
|
|
|
// TCD is accessible due to inheritance from DMABaseClass |
|
|
|
}; |
|
|
|
|
|
|
|
// arrange the relative priority of 2 or more DMA channels |
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2); |
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3); |
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // __cplusplus |
|
|
|
|
|
|
|
#endif // DMAChannel_h_ |