Browse Source

Add doughboy's alternate serial1 code (for reference only, not used yet)

main
PaulStoffregen 9 years ago
parent
commit
b9044c4289
1 changed files with 507 additions and 0 deletions
  1. +507
    -0
      teensy3/serial1_doughboy.txt

+ 507
- 0
teensy3/serial1_doughboy.txt View File

@@ -0,0 +1,507 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

// alternate version supporting RTS by disable of receive interrupt
// https://forum.pjrc.com/threads/30536-Complete-implementation-of-UART-hardware-flow-control
// https://forum.pjrc.com/threads/29446-Teensy-Hardware-Flow-Control-RTS-CTS/page2

#include "kinetis.h"
#include "core_pins.h"
#include "HardwareSerial.h"

////////////////////////////////////////////////////////////////
// Tunable parameters (relatively safe to edit these numbers)
////////////////////////////////////////////////////////////////

#define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest


////////////////////////////////////////////////////////////////
// changes not recommended below this point....
////////////////////////////////////////////////////////////////

#ifdef SERIAL_9BIT_SUPPORT
static uint8_t use9Bits = 0;
#define BUFTYPE uint16_t
#else
#define BUFTYPE uint8_t
#define use9Bits 0
#endif

static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
static volatile uint8_t transmitting = 0;
#if defined(KINETISK)
static volatile uint8_t *transmit_pin=NULL;
#define transmit_assert() *transmit_pin = 1
#define transmit_deassert() *transmit_pin = 0
#elif defined(KINETISL)
static volatile uint8_t *transmit_pin=NULL;
static uint8_t transmit_mask=0;
#define transmit_assert() *(transmit_pin+4) = transmit_mask;
#define transmit_deassert() *(transmit_pin+8) = transmit_mask;
#endif
#if TX_BUFFER_SIZE > 255
static volatile uint16_t tx_buffer_head = 0;
static volatile uint16_t tx_buffer_tail = 0;
#else
static volatile uint8_t tx_buffer_head = 0;
static volatile uint8_t tx_buffer_tail = 0;
#endif
#if RX_BUFFER_SIZE > 255
static volatile uint16_t rx_buffer_head = 0;
static volatile uint16_t rx_buffer_tail = 0;
#else
static volatile uint8_t rx_buffer_head = 0;
static volatile uint8_t rx_buffer_tail = 0;
#endif

// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer

void serial_begin(uint32_t divisor)
{
SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
rx_buffer_head = 0;
rx_buffer_tail = 0;
tx_buffer_head = 0;
tx_buffer_tail = 0;
transmitting = 0;
CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
#if defined(HAS_KINETISK_UART0)
UART0_BDH = (divisor >> 13) & 0x1F;
UART0_BDL = (divisor >> 5) & 0xFF;
UART0_C4 = divisor & 0x1F;
#ifdef HAS_KINETISK_UART0_FIFO
UART0_C1 = UART_C1_ILT;
UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
#else
UART0_C1 = 0;
UART0_PFIFO = 0;
#endif
#elif defined(HAS_KINETISL_UART0)
UART0_BDH = (divisor >> 8) & 0x1F;
UART0_BDL = divisor & 0xFF;
UART0_C1 = 0;
#endif
UART0_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE;
NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
}

void serial_format(uint32_t format)
{
uint8_t c;

c = UART0_C1;
c = (c & ~0x13) | (format & 0x03); // configure parity
if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
UART0_C1 = c;
if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
c = UART0_S2 & ~0x10;
if (format & 0x10) c |= 0x10; // rx invert
UART0_S2 = c;
c = UART0_C3 & ~0x10;
if (format & 0x20) c |= 0x10; // tx invert
UART0_C3 = c;
#ifdef SERIAL_9BIT_SUPPORT
c = UART0_C4 & 0x1F;
if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
UART0_C4 = c;
use9Bits = format & 0x80;
#endif
}

void serial_end(void)
{
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
while (transmitting) yield(); // wait for buffered data to send
NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
UART0_C2 = 0;
CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
rx_buffer_head = 0;
rx_buffer_tail = 0;
}

void serial_set_transmit_pin(uint8_t pin)
{
while (transmitting) ;
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
transmit_pin = portOutputRegister(pin);
#if defined(KINETISL)
transmit_mask = digitalPinToBitMask(pin);
#endif
}

int serial_set_rts(uint8_t pin)
{
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
if (pin == 6) {
CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
} else if (pin == 19) {
CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
} else {
UART0_MODEM &= ~UART_MODEM_RXRTSE;
return 0;
}
UART0_MODEM |= UART_MODEM_RXRTSE;
return 1;
}

int serial_set_cts(uint8_t pin)
{
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
if (pin == 18) {
CORE_PIN18_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown?
} else if (pin == 20) {
CORE_PIN20_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown?
} else {
UART0_MODEM &= ~UART_MODEM_TXCTSE;
return 0;
}
UART0_MODEM |= UART_MODEM_TXCTSE;
return 1;
}

void serial_putchar(uint32_t c)
{
uint32_t head, n;

if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
if (transmit_pin) transmit_assert();
head = tx_buffer_head;
if (++head >= TX_BUFFER_SIZE) head = 0;
while (tx_buffer_tail == head) {
int priority = nvic_execution_priority();
if (priority <= IRQ_PRIORITY) {
if ((UART0_S1 & UART_S1_TDRE)) {
uint32_t tail = tx_buffer_tail;
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
UART0_D = n;
tx_buffer_tail = tail;
}
} else if (priority >= 256) {
yield();
}
}
tx_buffer[head] = c;
transmitting = 1;
tx_buffer_head = head;
UART0_C2 |= UART_C2_TIE;
UART0_C2 &= ~UART_C2_TCIE;
}

#ifdef HAS_KINETISK_UART0_FIFO
void serial_write(const void *buf, unsigned int count)
{
const uint8_t *p = (const uint8_t *)buf;
const uint8_t *end = p + count;
uint32_t head, n;

if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
if (transmit_pin) transmit_assert();
while (p < end) {
head = tx_buffer_head;
if (++head >= TX_BUFFER_SIZE) head = 0;
if (tx_buffer_tail == head) {
UART0_C2 |= UART_C2_TIE;
UART0_C2 &= ~UART_C2_TCIE;
do {
int priority = nvic_execution_priority();
if (priority <= IRQ_PRIORITY) {
if ((UART0_S1 & UART_S1_TDRE)) {
uint32_t tail = tx_buffer_tail;
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
UART0_D = n;
tx_buffer_tail = tail;
}
} else if (priority >= 256) {
yield();
}
} while (tx_buffer_tail == head);
}
tx_buffer[head] = *p++;
transmitting = 1;
tx_buffer_head = head;
}
UART0_C2 |= UART_C2_TIE;
UART0_C2 &= ~UART_C2_TCIE;
}
#else
void serial_write(const void *buf, unsigned int count)
{
const uint8_t *p = (const uint8_t *)buf;
while (count-- > 0) serial_putchar(*p++);
}
#endif

void serial_flush(void)
{
while (transmitting) yield(); // wait
}

int serial_write_buffer_free(void)
{
uint32_t head, tail;

head = tx_buffer_head;
tail = tx_buffer_tail;
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}

int serial_available(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head >= tail) return head - tail;
return RX_BUFFER_SIZE + head - tail;
}

int serial_getchar(void)
{
uint32_t head, tail;
int c;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
c = rx_buffer[tail];
rx_buffer_tail = tail;
#ifdef HAS_KINETISK_UART0_FIFO
if ((UART0_C2 & (UART_C2_RIE | UART_C2_ILIE))==0) {//rx interrupt currently disabled
int freespace;
if (head >= tail) //rx head and tail would be unchanged from above if interrupts were disabled
freespace = RX_BUFFER_SIZE -1 + tail - head;
else
freespace = tail - head - 1;
if (freespace >= UART0_RCFIFO) {
UART0_C2 |= (UART_C2_RIE | UART_C2_ILIE);//enable rx interrupts
}
}
#else
UART0_C2 |= UART_C2_RIE;
#endif
return c;
}

int serial_peek(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
return rx_buffer[tail];
}

void serial_clear(void)
{
#ifdef HAS_KINETISK_UART0_FIFO
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
UART0_CFIFO = UART_CFIFO_RXFLUSH;
UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
#endif
rx_buffer_head = rx_buffer_tail;
}

// status interrupt combines
// Transmit data below watermark UART_S1_TDRE
// Transmit complete UART_S1_TC
// Idle line UART_S1_IDLE
// Receive data above watermark UART_S1_RDRF
// LIN break detect UART_S2_LBKDIF
// RxD pin active edge UART_S2_RXEDGIF

void uart0_status_isr(void)
{
uint32_t head, tail, n;
uint8_t c;
#ifdef HAS_KINETISK_UART0_FIFO
uint32_t newhead;

if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
if (UART0_RCFIFO == 0) {
// The only way to clear the IDLE interrupt flag is
// to read the data register. But reading with no
// data causes a FIFO underrun, which causes the
// FIFO to return corrupted data. If anyone from
// Freescale reads this, what a poor design! There
// write should be a write-1-to-clear for IDLE.
c = UART0_D;
// flushing the fifo recovers from the underrun,
// but there's a possible race condition where a
// new character could be received between reading
// RCFIFO == 0 and flushing the FIFO. To minimize
// the chance, interrupts are disabled so a higher
// priority interrupt (hopefully) doesn't delay.
// TODO: change this to disabling the IDLE interrupt
// which won't be simple, since we already manage
// which transmit interrupts are enabled.
__disable_irq();
UART0_CFIFO = UART_CFIFO_RXFLUSH;
__enable_irq();
} else {
head = rx_buffer_head;
tail = rx_buffer_tail;
do {
newhead = head + 1;
if (newhead >= RX_BUFFER_SIZE) newhead = 0;
if (UART0_MODEM & UART_MODEM_RXRTSE) {
if (newhead == tail) {
UART0_C2 &= ~(UART_C2_RIE | UART_C2_ILIE);//disable rx interrupts
break;
}
}
if (UART0_RCFIFO==1) UART0_S1; //as per page 1214 of datasheet regarding resetting of RDRF flag
if (use9Bits && (UART0_C3 & 0x80)) {
n = UART0_D | 0x100;
} else {
n = UART0_D;
}
head = newhead;
rx_buffer[head] = n;
} while (UART0_RCFIFO);
rx_buffer_head = head;
}
}
c = UART0_C2;
if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
head = tx_buffer_head;
tail = tx_buffer_tail;
do {
if (tail == head) break;
if (++tail >= TX_BUFFER_SIZE) tail = 0;
UART0_S1;
n = tx_buffer[tail];
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
UART0_D = n;
} while (UART0_TCFIFO < 8);
tx_buffer_tail = tail;
if (UART0_S1 & UART_S1_TDRE) {
UART0_C2 |= UART_C2_TCIE;
UART0_C2 &= ~UART_C2_TIE;
}
}
#else
if (UART0_S1 & UART_S1_RDRF) {
do {
head = rx_buffer_head + 1;
if (head >= RX_BUFFER_SIZE) head = 0;
if (UART0_MODEM & UART_MODEM_RXRTSE) {
if (head == rx_buffer_tail) {
UART0_C2 &= ~(UART_C2_RIE);//disable rx interrupts
break;
}
}
n = UART0_D;
if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
rx_buffer[head] = n;
rx_buffer_head = head;
break;
} while (true);
}
c = UART0_C2;
if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
head = tx_buffer_head;
tail = tx_buffer_tail;
if (head == tail) {
UART0_C2 |= UART_C2_TCIE;
UART0_C2 &= ~UART_C2_TIE;
} else {
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
UART0_D = n;
tx_buffer_tail = tail;
}
}
#endif
if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
transmitting = 0;
if (transmit_pin) transmit_deassert();
UART0_C2 &= ~(UART_C2_TCIE | UART_C2_TIE);
}
}

void serial_print(const char *p)
{
while (*p) {
char c = *p++;
if (c == '\n') serial_putchar('\r');
serial_putchar(c);
}
}

static void serial_phex1(uint32_t n)
{
n &= 15;
if (n < 10) {
serial_putchar('0' + n);
} else {
serial_putchar('A' - 10 + n);
}
}

void serial_phex(uint32_t n)
{
serial_phex1(n >> 4);
serial_phex1(n);
}

void serial_phex16(uint32_t n)
{
serial_phex(n >> 8);
serial_phex(n);
}

void serial_phex32(uint32_t n)
{
serial_phex(n >> 24);
serial_phex(n >> 16);
serial_phex(n >> 8);
serial_phex(n);
}

Loading…
Cancel
Save