|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "kinetis.h" |
|
|
#include "kinetis.h" |
|
|
|
|
|
|
|
|
// This code is a work-in-progress. It's incomplete and not usable yet... |
|
|
|
|
|
// |
|
|
|
|
|
|
|
|
// Discussion about DMAChannel is here: |
|
|
// http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 |
|
|
// http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 |
|
|
|
|
|
|
|
|
|
|
|
#define DMACHANNEL_HAS_BEGIN |
|
|
|
|
|
#define DMACHANNEL_HAS_BOOLEAN_CTOR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The channel allocation bitmask is accessible from "C" namespace, |
|
|
|
|
|
// so C-only code can reserve DMA channels |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
extern "C" { |
|
|
|
|
|
#endif |
|
|
|
|
|
extern uint16_t dma_channel_allocated_mask; |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
|
|
|
// known libraries with DMA usage (in need of porting to this new scheme): |
|
|
// known libraries with DMA usage (in need of porting to this new scheme): |
|
|
// |
|
|
// |
|
|
|
|
|
|
|
|
// https://github.com/pixelmatix/SmartMatrix |
|
|
// https://github.com/pixelmatix/SmartMatrix |
|
|
// https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme |
|
|
// https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************/ |
|
|
|
|
|
/** Teensy 3.0 & 3.1 **/ |
|
|
|
|
|
/****************************************************************/ |
|
|
#if defined(KINETISK) |
|
|
#if defined(KINETISK) |
|
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
|
|
|
|
|
|
#define DMACHANNEL_HAS_BEGIN |
|
|
|
|
|
#define DMACHANNEL_HAS_BOOLEAN_CTOR |
|
|
|
|
|
|
|
|
|
|
|
class DMABaseClass { |
|
|
class DMABaseClass { |
|
|
public: |
|
|
public: |
|
|
|
|
|
|
|
|
// code, but direct control of all parameters is possible. |
|
|
// code, but direct control of all parameters is possible. |
|
|
uint8_t channel; |
|
|
uint8_t channel; |
|
|
// TCD is accessible due to inheritance from DMABaseClass |
|
|
// TCD is accessible due to inheritance from DMABaseClass |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// arrange the relative priority of 2 or more DMA channels |
|
|
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2); |
|
|
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3); |
|
|
|
|
|
void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************/ |
|
|
|
|
|
/** Teensy-LC **/ |
|
|
|
|
|
/****************************************************************/ |
|
|
|
|
|
#elif defined(KINETISL) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DMABaseClass { |
|
|
|
|
|
public: |
|
|
|
|
|
typedef struct __attribute__((packed)) { |
|
|
|
|
|
volatile const void * volatile SAR; |
|
|
|
|
|
volatile void * volatile DAR; |
|
|
|
|
|
volatile uint32_t DSR_BCR; |
|
|
|
|
|
volatile uint32_t DCR; |
|
|
|
|
|
} CFG_t; |
|
|
|
|
|
CFG_t *CFG; |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Data Transfer **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
// Use a single variable as the data source. Typically a register |
|
|
|
|
|
// for receiving data from one of the hardware peripherals is used. |
|
|
|
|
|
void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); } |
|
|
|
|
|
void source(volatile const unsigned char &p) { |
|
|
|
|
|
CFG->SAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1); |
|
|
|
|
|
} |
|
|
|
|
|
void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); } |
|
|
|
|
|
void source(volatile const unsigned short &p) { |
|
|
|
|
|
CFG->SAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2); |
|
|
|
|
|
} |
|
|
|
|
|
void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
|
|
void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
|
|
void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); } |
|
|
|
|
|
void source(volatile const unsigned long &p) { |
|
|
|
|
|
CFG->SAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data source. Typically a |
|
|
|
|
|
// buffer for transmitting data is used. |
|
|
|
|
|
void sourceBuffer(volatile const signed char p[], unsigned int len) { |
|
|
|
|
|
sourceBuffer((volatile const uint8_t *)p, len); } |
|
|
|
|
|
void sourceBuffer(volatile const unsigned char p[], unsigned int len) { |
|
|
|
|
|
if (len > 0xFFFFF) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void sourceBuffer(volatile const signed short p[], unsigned int len) { |
|
|
|
|
|
sourceBuffer((volatile const uint16_t *)p, len); } |
|
|
|
|
|
void sourceBuffer(volatile const unsigned short p[], unsigned int len) { |
|
|
|
|
|
if (len > 0xFFFFF) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void sourceBuffer(volatile const signed int p[], unsigned int len) { |
|
|
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceBuffer(volatile const unsigned int p[], unsigned int len) { |
|
|
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceBuffer(volatile const signed long p[], unsigned int len) { |
|
|
|
|
|
sourceBuffer((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceBuffer(volatile const unsigned long p[], unsigned int len) { |
|
|
|
|
|
if (len > 0xFFFFF) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use a circular buffer as the data source |
|
|
|
|
|
void sourceCircular(volatile const signed char p[], unsigned int len) { |
|
|
|
|
|
sourceCircular((volatile const uint8_t *)p, len); } |
|
|
|
|
|
void sourceCircular(volatile const unsigned char p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC |
|
|
|
|
|
| DMA_DCR_SMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void sourceCircular(volatile const signed short p[], unsigned int len) { |
|
|
|
|
|
sourceCircular((volatile const uint16_t *)p, len); } |
|
|
|
|
|
void sourceCircular(volatile const unsigned short p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC |
|
|
|
|
|
| DMA_DCR_SMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void sourceCircular(volatile const signed int p[], unsigned int len) { |
|
|
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceCircular(volatile const unsigned int p[], unsigned int len) { |
|
|
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceCircular(volatile const signed long p[], unsigned int len) { |
|
|
|
|
|
sourceCircular((volatile const uint32_t *)p, len); } |
|
|
|
|
|
void sourceCircular(volatile const unsigned long p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->SAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC |
|
|
|
|
|
| DMA_DCR_SMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use a single variable as the data destination. Typically a register |
|
|
|
|
|
// for transmitting data to one of the hardware peripherals is used. |
|
|
|
|
|
void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); } |
|
|
|
|
|
void destination(volatile unsigned char &p) { |
|
|
|
|
|
CFG->DAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1); |
|
|
|
|
|
} |
|
|
|
|
|
void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); } |
|
|
|
|
|
void destination(volatile unsigned short &p) { |
|
|
|
|
|
CFG->DAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2); |
|
|
|
|
|
} |
|
|
|
|
|
void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
|
|
void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
|
|
void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); } |
|
|
|
|
|
void destination(volatile unsigned long &p) { |
|
|
|
|
|
CFG->DAR = &p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data destination. Typically a |
|
|
|
|
|
// buffer for receiving data is used. |
|
|
|
|
|
void destinationBuffer(volatile signed char p[], unsigned int len) { |
|
|
|
|
|
destinationBuffer((volatile uint8_t *)p, len); } |
|
|
|
|
|
void destinationBuffer(volatile unsigned char p[], unsigned int len) { |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void destinationBuffer(volatile signed short p[], unsigned int len) { |
|
|
|
|
|
destinationBuffer((volatile uint16_t *)p, len); } |
|
|
|
|
|
void destinationBuffer(volatile unsigned short p[], unsigned int len) { |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2) | DMA_DCR_DINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void destinationBuffer(volatile signed int p[], unsigned int len) { |
|
|
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationBuffer(volatile unsigned int p[], unsigned int len) { |
|
|
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationBuffer(volatile signed long p[], unsigned int len) { |
|
|
|
|
|
destinationBuffer((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationBuffer(volatile unsigned long p[], unsigned int len) { |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0) | DMA_DCR_DINC; |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use a circular buffer as the data destination |
|
|
|
|
|
void destinationCircular(volatile signed char p[], unsigned int len) { |
|
|
|
|
|
destinationCircular((volatile uint8_t *)p, len); } |
|
|
|
|
|
void destinationCircular(volatile unsigned char p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC |
|
|
|
|
|
| DMA_DCR_DMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void destinationCircular(volatile signed short p[], unsigned int len) { |
|
|
|
|
|
destinationCircular((volatile uint16_t *)p, len); } |
|
|
|
|
|
void destinationCircular(volatile unsigned short p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC |
|
|
|
|
|
| DMA_DCR_DMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
void destinationCircular(volatile signed int p[], unsigned int len) { |
|
|
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationCircular(volatile unsigned int p[], unsigned int len) { |
|
|
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationCircular(volatile signed long p[], unsigned int len) { |
|
|
|
|
|
destinationCircular((volatile uint32_t *)p, len); } |
|
|
|
|
|
void destinationCircular(volatile unsigned long p[], unsigned int len) { |
|
|
|
|
|
uint32_t mod = len2mod(len); |
|
|
|
|
|
if (mod == 0) return; |
|
|
|
|
|
CFG->DAR = p; |
|
|
|
|
|
CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC |
|
|
|
|
|
| DMA_DCR_DMOD(mod); |
|
|
|
|
|
CFG->DSR_BCR = len; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
/** Quantity of Data to Transfer **/ |
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
// Set the data size used for each triggered transfer |
|
|
|
|
|
void transferSize(unsigned int len) { |
|
|
|
|
|
uint32_t dcr = CFG->DCR & 0xF0C8FFFF; |
|
|
|
|
|
if (len == 4) { |
|
|
|
|
|
CFG->DCR = dcr | DMA_DCR_DSIZE(0) | DMA_DCR_DSIZE(0); |
|
|
|
|
|
} else if (len == 2) { |
|
|
|
|
|
CFG->DCR = dcr | DMA_DCR_DSIZE(0) | DMA_DCR_DSIZE(0); |
|
|
|
|
|
} else { |
|
|
|
|
|
CFG->DCR = dcr | DMA_DCR_DSIZE(0) | DMA_DCR_DSIZE(0); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Set the number of transfers (number of triggers until complete) |
|
|
|
|
|
void transferCount(unsigned int len) { |
|
|
|
|
|
uint32_t s, d, n = 0; // 0 = 8 bit, 1 = 16 bit, 2 = 32 bit |
|
|
|
|
|
uint32_t dcr = CFG->DCR; |
|
|
|
|
|
s = (dcr >> 20) & 3; |
|
|
|
|
|
d = (dcr >> 17) & 3; |
|
|
|
|
|
if (s == 0 || d == 0) n = 2; |
|
|
|
|
|
else if (s == 2 || d == 2) n = 1; |
|
|
|
|
|
CFG->DSR_BCR = len >> n; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
/** Special Options / Features **/ |
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
void interruptAtCompletion(void) { |
|
|
|
|
|
CFG->DCR |= DMA_DCR_EINT; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
/* usage cases: |
|
|
|
|
|
|
|
|
|
|
|
************************ |
|
|
|
|
|
OctoWS2811: |
|
|
|
|
|
************************ |
|
|
|
|
|
|
|
|
|
|
|
// enable clocks to the DMA controller and DMAMUX |
|
|
|
|
|
SIM_SCGC7 |= SIM_SCGC7_DMA; |
|
|
|
|
|
SIM_SCGC6 |= SIM_SCGC6_DMAMUX; |
|
|
|
|
|
DMA_CR = 0; |
|
|
|
|
|
DMA_CERQ = 1; |
|
|
|
|
|
DMA_CERQ = 2; |
|
|
|
|
|
DMA_CERQ = 3; |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #1 sets WS2811 high at the beginning of each cycle |
|
|
|
|
|
DMA_TCD1_SADDR = &ones; |
|
|
|
|
|
DMA_TCD1_SOFF = 0; |
|
|
|
|
|
DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
|
|
DMA_TCD1_NBYTES_MLNO = 1; |
|
|
|
|
|
DMA_TCD1_SLAST = 0; |
|
|
|
|
|
DMA_TCD1_DADDR = &GPIOD_PSOR; |
|
|
|
|
|
DMA_TCD1_DOFF = 0; |
|
|
|
|
|
DMA_TCD1_CITER_ELINKNO = bufsize; |
|
|
|
|
|
DMA_TCD1_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD1_CSR = DMA_TCD_CSR_DREQ; |
|
|
|
|
|
DMA_TCD1_BITER_ELINKNO = bufsize; |
|
|
|
|
|
dma1.source(ones); |
|
|
|
|
|
dma1.destination(GPIOD_PSOR); |
|
|
|
|
|
dma1.size(1); |
|
|
|
|
|
dma1.count(bufsize); |
|
|
|
|
|
dma1.disableOnCompletion(); |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #2 writes the pixel data at 20% of the cycle |
|
|
|
|
|
DMA_TCD2_SADDR = frameBuffer; |
|
|
|
|
|
DMA_TCD2_SOFF = 1; |
|
|
|
|
|
DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
|
|
DMA_TCD2_NBYTES_MLNO = 1; |
|
|
|
|
|
DMA_TCD2_SLAST = -bufsize; |
|
|
|
|
|
DMA_TCD2_DADDR = &GPIOD_PDOR; |
|
|
|
|
|
DMA_TCD2_DOFF = 0; |
|
|
|
|
|
DMA_TCD2_CITER_ELINKNO = bufsize; |
|
|
|
|
|
DMA_TCD2_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD2_CSR = DMA_TCD_CSR_DREQ; |
|
|
|
|
|
DMA_TCD2_BITER_ELINKNO = bufsize; |
|
|
|
|
|
dma2.source(frameBuffer, sizeof(frameBuffer)); |
|
|
|
|
|
dma2.destination(GPIOD_PDOR); |
|
|
|
|
|
dma2.size(1); |
|
|
|
|
|
dma2.count(bufsize); |
|
|
|
|
|
dma2.disableOnCompletion(); |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #3 clear all the pins low at 48% of the cycle |
|
|
|
|
|
DMA_TCD3_SADDR = &ones; |
|
|
|
|
|
DMA_TCD3_SOFF = 0; |
|
|
|
|
|
DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
|
|
DMA_TCD3_NBYTES_MLNO = 1; |
|
|
|
|
|
DMA_TCD3_SLAST = 0; |
|
|
|
|
|
DMA_TCD3_DADDR = &GPIOD_PCOR; |
|
|
|
|
|
DMA_TCD3_DOFF = 0; |
|
|
|
|
|
DMA_TCD3_CITER_ELINKNO = bufsize; |
|
|
|
|
|
DMA_TCD3_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
DMA_TCD3_BITER_ELINKNO = bufsize; |
|
|
|
|
|
dma3.source(ones); |
|
|
|
|
|
dma3.destination(GPIOD_PCOR); |
|
|
|
|
|
dma3.size(1); |
|
|
|
|
|
dma3.count(bufsize); |
|
|
|
|
|
dma3.disableOnCompletion(); |
|
|
|
|
|
|
|
|
|
|
|
************************ |
|
|
|
|
|
Audio, DAC |
|
|
|
|
|
************************ |
|
|
|
|
|
|
|
|
|
|
|
DMA_CR = 0; |
|
|
|
|
|
DMA_TCD4_SADDR = dac_buffer; |
|
|
|
|
|
DMA_TCD4_SOFF = 2; |
|
|
|
|
|
DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
|
|
DMA_TCD4_NBYTES_MLNO = 2; |
|
|
|
|
|
DMA_TCD4_SLAST = -sizeof(dac_buffer); |
|
|
|
|
|
DMA_TCD4_DADDR = &DAC0_DAT0L; |
|
|
|
|
|
DMA_TCD4_DOFF = 0; |
|
|
|
|
|
DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2; |
|
|
|
|
|
DMA_TCD4_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2; |
|
|
|
|
|
DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
DMAMUX0_CHCFG4 = DMAMUX_DISABLE; |
|
|
|
|
|
DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
|
|
|
|
************************ |
|
|
|
|
|
Audio, I2S |
|
|
|
|
|
************************ |
|
|
|
|
|
|
|
|
|
|
|
DMA_CR = 0; |
|
|
|
|
|
DMA_TCD0_SADDR = i2s_tx_buffer; |
|
|
|
|
|
DMA_TCD0_SOFF = 2; |
|
|
|
|
|
DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
|
|
DMA_TCD0_NBYTES_MLNO = 2; |
|
|
|
|
|
DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer); |
|
|
|
|
|
DMA_TCD0_DADDR = &I2S0_TDR0; |
|
|
|
|
|
DMA_TCD0_DOFF = 0; |
|
|
|
|
|
DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; |
|
|
|
|
|
DMA_TCD0_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; |
|
|
|
|
|
DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
|
|
|
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_DISABLE; |
|
|
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
|
|
|
|
************************ |
|
|
|
|
|
ADC lib, Pedro Villanueva |
|
|
|
|
|
************************ |
|
|
|
|
|
|
|
|
|
|
|
DMA_CR = 0; // normal mode of operation |
|
|
|
|
|
|
|
|
|
|
|
*DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing |
|
|
|
|
|
|
|
|
|
|
|
*DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) | |
|
|
|
|
|
DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) | |
|
|
|
|
|
DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values |
|
|
|
|
|
*DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop) |
|
|
|
|
|
|
|
|
|
|
|
*DMA_TCD_SADDR = ADC_RA; // source address |
|
|
|
|
|
*DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes |
|
|
|
|
|
*DMA_TCD_SLAST = 0; // don't change src address after major loop completes |
|
|
|
|
|
|
|
|
|
|
|
*DMA_TCD_DADDR = elems; // destination address |
|
|
|
|
|
*DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop |
|
|
|
|
|
*DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element |
|
|
|
|
|
|
|
|
|
|
|
*DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled |
|
|
|
|
|
*DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled |
|
|
|
|
|
|
|
|
|
|
|
*DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete |
|
|
|
|
|
|
|
|
|
|
|
DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request |
|
|
|
|
|
DMA_CINT = DMA_channel; // clear interrupts |
|
|
|
|
|
|
|
|
|
|
|
uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0; |
|
|
|
|
|
if(ADC_number==1){ |
|
|
|
|
|
DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1; |
|
|
|
|
|
} |
|
|
|
|
|
*DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0 |
|
|
|
|
|
|
|
|
|
|
|
DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request |
|
|
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts |
|
|
|
|
|
|
|
|
|
|
|
************************ |
|
|
|
|
|
SmartMatrix |
|
|
|
|
|
************************ |
|
|
|
|
|
|
|
|
|
|
|
// enable minor loop mapping so addresses can get reset after minor loops |
|
|
|
|
|
DMA_CR = 1 << 7; |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO |
|
|
|
|
|
// using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins |
|
|
|
|
|
// address temporary buffer is refreshed before each DMA trigger (by DMA channel #2) |
|
|
|
|
|
// only use single major loop, never disable channel |
|
|
|
|
|
#define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2 |
|
|
|
|
|
DMA_TCD0_SADDR = &gpiosync.gpio_pcor; |
|
|
|
|
|
DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; |
|
|
|
|
|
DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); |
|
|
|
|
|
DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); |
|
|
|
|
|
// Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete |
|
|
|
|
|
// Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop |
|
|
|
|
|
DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE | |
|
|
|
|
|
((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) | |
|
|
|
|
|
(ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor)); |
|
|
|
|
|
// start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset) |
|
|
|
|
|
DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER; |
|
|
|
|
|
// update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER |
|
|
|
|
|
DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER; |
|
|
|
|
|
DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); |
|
|
|
|
|
// single major loop |
|
|
|
|
|
DMA_TCD0_CITER_ELINKNO = 1; |
|
|
|
|
|
DMA_TCD0_BITER_ELINKNO = 1; |
|
|
|
|
|
// link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete |
|
|
|
|
|
DMA_TCD0_CSR = (1 << 8) | (1 << 5); |
|
|
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle |
|
|
|
|
|
// only use single major loop, never disable channel |
|
|
|
|
|
DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues; |
|
|
|
|
|
DMA_TCD1_SOFF = sizeof(uint16_t); |
|
|
|
|
|
DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
|
|
DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
|
|
// 16-bit = 2 bytes transferred |
|
|
|
|
|
// transfer two 16-bit values, reset destination address back after each minor loop |
|
|
|
|
|
DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
|
|
// start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset) |
|
|
|
|
|
DMA_TCD1_DADDR = &gpiosync.gpio_pcor; |
|
|
|
|
|
DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; |
|
|
|
|
|
DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor)); |
|
|
|
|
|
// no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete |
|
|
|
|
|
DMA_TCD1_CITER_ELINKNO = 1; |
|
|
|
|
|
DMA_TCD1_BITER_ELINKNO = 1; |
|
|
|
|
|
DMA_TCD1_CSR = 0; |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block |
|
|
|
|
|
// only use single major loop, never disable channel |
|
|
|
|
|
// link to channel 3 when complete |
|
|
|
|
|
#define TIMER_REGISTERS_TO_UPDATE 2 |
|
|
|
|
|
DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe; |
|
|
|
|
|
DMA_TCD2_SOFF = sizeof(uint16_t); |
|
|
|
|
|
DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
|
|
DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
|
|
// 16-bit = 2 bytes transferred |
|
|
|
|
|
DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t); |
|
|
|
|
|
DMA_TCD2_DADDR = &FTM1_C1V; |
|
|
|
|
|
DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V; |
|
|
|
|
|
DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD); |
|
|
|
|
|
// no minor loop linking, single major loop |
|
|
|
|
|
DMA_TCD2_CITER_ELINKNO = 1; |
|
|
|
|
|
DMA_TCD2_BITER_ELINKNO = 1; |
|
|
|
|
|
// link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete |
|
|
|
|
|
DMA_TCD2_CSR = (3 << 8) | (1 << 5); |
|
|
|
|
|
DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
|
|
|
|
#define DMA_TCD_MLOFF_MASK (0x3FFFFC00) |
|
|
|
|
|
|
|
|
|
|
|
// DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete |
|
|
|
|
|
DMA_TCD3_SADDR = matrixUpdateData[0][0]; |
|
|
|
|
|
DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2; |
|
|
|
|
|
// SADDR will get updated by ISR, no need to set SLAST |
|
|
|
|
|
DMA_TCD3_SLAST = 0; |
|
|
|
|
|
DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
|
|
// after each minor loop, set source to point back to the beginning of this set of data, |
|
|
|
|
|
// but advance by 1 byte to get the next significant bits data |
|
|
|
|
|
DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | |
|
|
|
|
|
(((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) | |
|
|
|
|
|
(MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK); |
|
|
|
|
|
DMA_TCD3_DADDR = &GPIOD_PDOR; |
|
|
|
|
|
DMA_TCD3_DOFF = 0; |
|
|
|
|
|
DMA_TCD3_DLASTSGA = 0; |
|
|
|
|
|
DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW; |
|
|
|
|
|
DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW; |
|
|
|
|
|
// int after major loop is complete |
|
|
|
|
|
DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
// for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer) |
|
|
|
|
|
//DMA_TCD3_CSR |= (0x02 << 14); |
|
|
|
|
|
|
|
|
|
|
|
// enable a done interrupt when all DMA operations are complete |
|
|
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH3); |
|
|
|
|
|
|
|
|
|
|
|
// enable additional dma interrupt used as software interrupt |
|
|
|
|
|
NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority |
|
|
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH1); |
|
|
|
|
|
|
|
|
|
|
|
// enable channels 0, 1, 2, 3 |
|
|
|
|
|
DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); |
|
|
|
|
|
|
|
|
|
|
|
// at the end after everything is set up: enable timer from system clock, with appropriate prescale |
|
|
|
|
|
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
void disableOnCompletion(void) { |
|
|
|
|
|
CFG->DCR |= DMA_DCR_D_REQ; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Kinetis-L DMA does not have these features :-( |
|
|
|
|
|
// |
|
|
|
|
|
// void interruptAtHalf(void) {} |
|
|
|
|
|
// void replaceSettingsOnCompletion(const DMABaseClass &settings) {}; |
|
|
|
|
|
// TODO: can a 2nd linked channel be used to emulate this? |
|
|
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
|
|
// users should not be able to create instances of DMABaseClass, which |
|
|
|
|
|
// require the inheriting class to initialize the TCD pointer. |
|
|
|
|
|
DMABaseClass() {} |
|
|
|
|
|
|
|
|
|
|
|
static inline void copy_cfg(CFG_t *dst, const CFG_t *src) { |
|
|
|
|
|
dst->SAR = src->SAR; |
|
|
|
|
|
dst->DAR = src->DAR; |
|
|
|
|
|
dst->DSR_BCR = src->DSR_BCR; |
|
|
|
|
|
dst->DCR = src->DCR; |
|
|
|
|
|
} |
|
|
|
|
|
private: |
|
|
|
|
|
static inline uint32_t len2mod(uint32_t len) { |
|
|
|
|
|
if (len < 16) return 0; |
|
|
|
|
|
if (len < 32) return 1; |
|
|
|
|
|
if (len < 64) return 2; |
|
|
|
|
|
if (len < 128) return 3; |
|
|
|
|
|
if (len < 256) return 4; |
|
|
|
|
|
if (len < 512) return 5; |
|
|
|
|
|
if (len < 1024) return 6; |
|
|
|
|
|
if (len < 2048) return 7; |
|
|
|
|
|
if (len < 4096) return 8; |
|
|
|
|
|
if (len < 8192) return 9; |
|
|
|
|
|
if (len < 16384) return 10; |
|
|
|
|
|
if (len < 32768) return 11; |
|
|
|
|
|
if (len < 65536) return 12; |
|
|
|
|
|
if (len < 131072) return 13; |
|
|
|
|
|
if (len < 262144) return 14; |
|
|
|
|
|
return 15; |
|
|
|
|
|
} |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// DMASetting represents settings stored only in memory, which can be |
|
|
|
|
|
// applied to any DMA channel. |
|
|
|
|
|
|
|
|
|
|
|
class DMASetting : public DMABaseClass { |
|
|
|
|
|
public: |
|
|
|
|
|
DMASetting() { |
|
|
|
|
|
cfgdata.SAR = NULL; |
|
|
|
|
|
cfgdata.DAR = NULL; |
|
|
|
|
|
cfgdata.DSR_BCR = 0; |
|
|
|
|
|
cfgdata.DCR = DMA_DCR_CS; |
|
|
|
|
|
CFG = &cfgdata; |
|
|
|
|
|
} |
|
|
|
|
|
DMASetting(const DMASetting &c) { |
|
|
|
|
|
CFG = &cfgdata; |
|
|
|
|
|
*this = c; |
|
|
|
|
|
} |
|
|
|
|
|
DMASetting(const DMABaseClass &c) { |
|
|
|
|
|
CFG = &cfgdata; |
|
|
|
|
|
*this = c; |
|
|
|
|
|
} |
|
|
|
|
|
DMASetting & operator = (const DMABaseClass &rhs) { |
|
|
|
|
|
copy_cfg(CFG, rhs.CFG); |
|
|
|
|
|
return *this; |
|
|
|
|
|
} |
|
|
|
|
|
private: |
|
|
|
|
|
CFG_t cfgdata __attribute__((aligned(4))); |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// DMAChannel reprents an actual DMA channel and its current settings |
|
|
|
|
|
|
|
|
|
|
|
class DMAChannel : public DMABaseClass { |
|
|
|
|
|
public: |
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
/** Channel Allocation **/ |
|
|
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
DMAChannel() { |
|
|
|
|
|
begin(); |
|
|
|
|
|
} |
|
|
|
|
|
DMAChannel(const DMAChannel &c) { |
|
|
|
|
|
CFG = c.CFG; |
|
|
|
|
|
channel = c.channel; |
|
|
|
|
|
} |
|
|
|
|
|
DMAChannel(const DMASetting &c) { |
|
|
|
|
|
begin(); |
|
|
|
|
|
copy_cfg(CFG, c.CFG); |
|
|
|
|
|
} |
|
|
|
|
|
DMAChannel(bool allocate) { |
|
|
|
|
|
if (allocate) begin(); |
|
|
|
|
|
} |
|
|
|
|
|
DMAChannel & operator = (const DMAChannel &rhs) { |
|
|
|
|
|
if (channel != rhs.channel) { |
|
|
|
|
|
release(); |
|
|
|
|
|
CFG = rhs.CFG; |
|
|
|
|
|
channel = rhs.channel; |
|
|
|
|
|
} |
|
|
|
|
|
return *this; |
|
|
|
|
|
} |
|
|
|
|
|
DMAChannel & operator = (const DMASetting &rhs) { |
|
|
|
|
|
copy_cfg(CFG, rhs.CFG); |
|
|
|
|
|
return *this; |
|
|
|
|
|
} |
|
|
|
|
|
~DMAChannel() { |
|
|
|
|
|
release(); |
|
|
|
|
|
} |
|
|
|
|
|
void begin(bool force_initialization = false); |
|
|
|
|
|
private: |
|
|
|
|
|
void release(void); |
|
|
|
|
|
|
|
|
|
|
|
public: |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Triggering **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
// Triggers cause the DMA channel to actually move data. Each |
|
|
|
|
|
// trigger moves a single data unit, which is typically 8, 16 or |
|
|
|
|
|
// 32 bits. If a channel is configured for 200 transfers |
|
|
|
|
|
|
|
|
|
|
|
// Use a hardware trigger to make the DMA channel run |
|
|
|
|
|
void triggerAtHardwareEvent(uint8_t source) { |
|
|
|
|
|
volatile uint8_t *mux; |
|
|
|
|
|
mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel; |
|
|
|
|
|
*mux = 0; |
|
|
|
|
|
*mux = (source & 63) | DMAMUX_ENABLE; |
|
|
|
|
|
CFG->DCR |= (DMA_DCR_ERQ | DMA_DCR_CS); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
|
|
// channel to trigger after each transfer is makes, except |
|
|
|
|
|
// the its last transfer. This effectively makes the 2 |
|
|
|
|
|
// channels run in parallel until the last transfer |
|
|
|
|
|
void triggerAtTransfersOf(DMABaseClass &ch) { |
|
|
|
|
|
uint32_t dcr = ch.CFG->DCR; |
|
|
|
|
|
uint32_t linkcc = (dcr >> 4) & 3; |
|
|
|
|
|
if (linkcc == 0 || linkcc == 2) { |
|
|
|
|
|
ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | |
|
|
|
|
|
DMA_DCR_LINKCC(2) | DMA_DCR_LCH1(channel); |
|
|
|
|
|
} else if (linkcc == 1) { |
|
|
|
|
|
ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | |
|
|
|
|
|
DMA_DCR_LCH1(channel); |
|
|
|
|
|
} else { |
|
|
|
|
|
uint32_t lch1 = (dcr >> 2) & 3; |
|
|
|
|
|
ch.CFG->DCR = (dcr |
|
|
|
|
|
& ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3) | DMA_DCR_LCH1(3))) |
|
|
|
|
|
| DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(lch1) | DMA_DCR_LCH1(channel); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
|
|
// channel to trigger when the other channel completes. |
|
|
|
|
|
void triggerAtCompletionOf(DMABaseClass &ch) { |
|
|
|
|
|
uint32_t dcr = ch.CFG->DCR; |
|
|
|
|
|
uint32_t linkcc = (dcr >> 4) & 3; |
|
|
|
|
|
if (linkcc == 0 || linkcc == 3) { |
|
|
|
|
|
ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | |
|
|
|
|
|
DMA_DCR_LINKCC(3) | DMA_DCR_LCH1(channel); |
|
|
|
|
|
} else { |
|
|
|
|
|
ch.CFG->DCR = (dcr |
|
|
|
|
|
& ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3))) |
|
|
|
|
|
| DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(channel); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Cause this DMA channel to be continuously triggered, so |
|
|
|
|
|
// it will move data as rapidly as possible, without waiting. |
|
|
|
|
|
// Normally this would be used with disableOnCompletion(). |
|
|
|
|
|
void triggerContinuously(void) { |
|
|
|
|
|
uint32_t dcr = CFG->DCR; |
|
|
|
|
|
dcr &= ~(DMA_DCR_ERQ | DMA_DCR_CS); |
|
|
|
|
|
CFG->DCR = dcr; |
|
|
|
|
|
CFG->DCR = dcr | DMA_DCR_START; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Manually trigger the DMA channel. |
|
|
|
|
|
void triggerManual(void) { |
|
|
|
|
|
CFG->DCR = (CFG->DCR & ~DMA_DCR_ERQ) | (DMA_DCR_CS | DMA_DCR_START); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Interrupts **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
// An interrupt routine can be run when the DMA channel completes |
|
|
|
|
|
// the entire transfer, and also optionally when half of the |
|
|
|
|
|
// transfer is completed. |
|
|
|
|
|
void attachInterrupt(void (*isr)(void)) { |
|
|
|
|
|
_VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; |
|
|
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void detachInterrupt(void) { |
|
|
|
|
|
NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void clearInterrupt(void) { |
|
|
|
|
|
CFG->DSR_BCR = DMA_DSR_BCR_DONE; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Enable / Disable **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
void enable(void) { |
|
|
|
|
|
} |
|
|
|
|
|
void disable(void) { |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Status **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
bool complete(void) { |
|
|
|
|
|
if (CFG->DSR_BCR & DMA_DSR_BCR_DONE) return true; |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
void clearComplete(void) { |
|
|
|
|
|
CFG->DSR_BCR |= DMA_DSR_BCR_DONE; |
|
|
|
|
|
} |
|
|
|
|
|
bool error(void) { |
|
|
|
|
|
if (CFG->DSR_BCR & |
|
|
|
|
|
(DMA_DSR_BCR_CE | DMA_DSR_BCR_BES | DMA_DSR_BCR_BED)) return true; |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
void clearError(void) { |
|
|
|
|
|
CFG->DSR_BCR |= DMA_DSR_BCR_DONE; |
|
|
|
|
|
} |
|
|
|
|
|
void * sourceAddress(void) { |
|
|
|
|
|
return (void *)(CFG->SAR); |
|
|
|
|
|
} |
|
|
|
|
|
void * destinationAddress(void) { |
|
|
|
|
|
return (void *)(CFG->DAR); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
/** Direct Hardware Access **/ |
|
|
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
|
|
|
|
uint8_t channel; |
|
|
|
|
|
// CFG is accessible due to inheritance from DMABaseClass |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
// arrange the relative priority of 2 or more DMA channels |
|
|
// arrange the relative priority of 2 or more DMA channels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" { |
|
|
|
|
|
#endif |
|
|
|
|
|
extern uint16_t dma_channel_allocated_mask; |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
#endif // KINETISL |
|
|
|
|
|
|
|
|
#endif // KINETISK |
|
|
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // __cplusplus |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // DMAChannel_h_ |