/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "core_pins.h" #include "pins_arduino.h" #include "HardwareSerial.h" #if defined(KINETISK) #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000) #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit))) //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1) //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0) const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = { {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG}, {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG} }; #elif defined(KINETISL) const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = { {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))}, {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))} }; #endif typedef void (*voidFuncPtr)(void); volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL]; #if defined(KINETISK) static void porta_interrupt(void); static void portb_interrupt(void); static void portc_interrupt(void); static void portd_interrupt(void); static void porte_interrupt(void); #elif defined(KINETISL) static void porta_interrupt(void); static void portcd_interrupt(void); #endif void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void)) { _VectorsRam[irq + 16] = function; } void attachInterrupt(uint8_t pin, void (*function)(void), int mode) { volatile uint32_t *config; uint32_t cfg, mask; if (pin >= CORE_NUM_DIGITAL) return; switch (mode) { case CHANGE: mask = 0x0B; break; case RISING: mask = 0x09; break; case FALLING: mask = 0x0A; break; case LOW: mask = 0x08; break; case HIGH: mask = 0x0C; break; default: return; } mask = (mask << 16) | 0x01000000; config = portConfigRegister(pin); #if defined(KINETISK) attachInterruptVector(IRQ_PORTA, porta_interrupt); attachInterruptVector(IRQ_PORTB, portb_interrupt); attachInterruptVector(IRQ_PORTC, portc_interrupt); attachInterruptVector(IRQ_PORTD, portd_interrupt); attachInterruptVector(IRQ_PORTE, porte_interrupt); #elif defined(KINETISL) attachInterruptVector(IRQ_PORTA, porta_interrupt); attachInterruptVector(IRQ_PORTCD, portcd_interrupt); #endif __disable_irq(); cfg = *config; cfg &= ~0x000F0000; // disable any previous interrupt *config = cfg; intFunc[pin] = function; // set the function pointer cfg |= mask; *config = cfg; // enable the new interrupt __enable_irq(); } void detachInterrupt(uint8_t pin) { volatile uint32_t *config; config = portConfigRegister(pin); __disable_irq(); *config = ((*config & ~0x000F0000) | 0x01000000); intFunc[pin] = NULL; __enable_irq(); } #if defined(__MK20DX128__) || defined(__MK20DX256__) static void porta_interrupt(void) { uint32_t isfr = PORTA_ISFR; PORTA_ISFR = isfr; if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3](); if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4](); if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24](); if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33](); } static void portb_interrupt(void) { uint32_t isfr = PORTB_ISFR; PORTB_ISFR = isfr; if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0](); if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1](); if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16](); if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17](); if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18](); if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19](); if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25](); if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32](); } static void portc_interrupt(void) { // TODO: these are inefficent. Use CLZ somehow.... uint32_t isfr = PORTC_ISFR; PORTC_ISFR = isfr; if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9](); if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10](); if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11](); if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12](); if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13](); if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15](); if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22](); if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23](); if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27](); if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28](); if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29](); if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30](); } static void portd_interrupt(void) { uint32_t isfr = PORTD_ISFR; PORTD_ISFR = isfr; if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2](); if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5](); if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6](); if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7](); if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8](); if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14](); if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20](); if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21](); } static void porte_interrupt(void) { uint32_t isfr = PORTE_ISFR; PORTE_ISFR = isfr; if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26](); if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31](); } #elif defined(__MKL26Z64__) static void porta_interrupt(void) { uint32_t isfr = PORTA_ISFR; PORTA_ISFR = isfr; if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3](); if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4](); } static void portcd_interrupt(void) { uint32_t isfr = PORTC_ISFR; PORTC_ISFR = isfr; if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9](); if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10](); if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11](); if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12](); if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13](); if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15](); if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22](); if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23](); isfr = PORTD_ISFR; PORTD_ISFR = isfr; if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2](); if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5](); if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6](); if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7](); if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8](); if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14](); if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20](); if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21](); } #endif #if defined(__MK20DX128__) || defined(__MK20DX256__) unsigned long rtc_get(void) { return RTC_TSR; } void rtc_set(unsigned long t) { RTC_SR = 0; RTC_TPR = 0; RTC_TSR = t; RTC_SR = RTC_SR_TCE; } // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm // For example, adjust = -100 is slows the clock by 11.92 ppm // void rtc_compensate(int adjust) { uint32_t comp, interval, tcr; // This simple approach tries to maximize the interval. // Perhaps minimizing TCR would be better, so the // compensation is distributed more evenly across // many seconds, rather than saving it all up and then // altering one second up to +/- 0.38% if (adjust >= 0) { comp = adjust; interval = 256; while (1) { tcr = comp * interval; if (tcr < 128*256) break; if (--interval == 1) break; } tcr = tcr >> 8; } else { comp = -adjust; interval = 256; while (1) { tcr = comp * interval; if (tcr < 129*256) break; if (--interval == 1) break; } tcr = tcr >> 8; tcr = 256 - tcr; } RTC_TCR = ((interval - 1) << 8) | tcr; } #else unsigned long rtc_get(void) { return 0; } void rtc_set(unsigned long t) { } void rtc_compensate(int adjust) { } #endif #if 0 // TODO: build system should define this // so RTC is automatically initialized to approx correct time // at least when the program begins running right after upload #ifndef TIME_T #define TIME_T 1350160272 #endif void init_rtc(void) { serial_print("init_rtc\n"); //SIM_SCGC6 |= SIM_SCGC6_RTC; // enable the RTC crystal oscillator, for approx 12pf crystal if (!(RTC_CR & RTC_CR_OSCE)) { serial_print("start RTC oscillator\n"); RTC_SR = 0; RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE; } // should wait for crystal to stabilize..... serial_print("SR="); serial_phex32(RTC_SR); serial_print("\n"); serial_print("CR="); serial_phex32(RTC_CR); serial_print("\n"); serial_print("TSR="); serial_phex32(RTC_TSR); serial_print("\n"); serial_print("TCR="); serial_phex32(RTC_TCR); serial_print("\n"); if (RTC_SR & RTC_SR_TIF) { // enable the RTC RTC_SR = 0; RTC_TPR = 0; RTC_TSR = TIME_T; RTC_SR = RTC_SR_TCE; } } #endif extern void usb_init(void); // create a default PWM at the same 488.28 Hz as Arduino Uno #if defined(KINETISK) #define F_TIMER F_BUS #elif defined(KINETISL) #if F_CPU > 16000000 #define F_TIMER (F_PLL/2) #else #define F_TIMER (F_PLL) #endif//Low Power #endif #if F_TIMER == 60000000 #define DEFAULT_FTM_MOD (61440 - 1) #define DEFAULT_FTM_PRESCALE 1 #elif F_TIMER == 56000000 #define DEFAULT_FTM_MOD (57344 - 1) #define DEFAULT_FTM_PRESCALE 1 #elif F_TIMER == 48000000 #define DEFAULT_FTM_MOD (49152 - 1) #define DEFAULT_FTM_PRESCALE 1 #elif F_TIMER == 40000000 #define DEFAULT_FTM_MOD (40960 - 1) #define DEFAULT_FTM_PRESCALE 1 #elif F_TIMER == 36000000 #define DEFAULT_FTM_MOD (36864 - 1) #define DEFAULT_FTM_PRESCALE 1 #elif F_TIMER == 24000000 #define DEFAULT_FTM_MOD (49152 - 1) #define DEFAULT_FTM_PRESCALE 0 #elif F_TIMER == 16000000 #define DEFAULT_FTM_MOD (32768 - 1) #define DEFAULT_FTM_PRESCALE 0 #elif F_TIMER == 8000000 #define DEFAULT_FTM_MOD (16384 - 1) #define DEFAULT_FTM_PRESCALE 0 #elif F_TIMER == 4000000 #define DEFAULT_FTM_MOD (8192 - 1) #define DEFAULT_FTM_PRESCALE 0 #elif F_TIMER == 2000000 #define DEFAULT_FTM_MOD (4096 - 1) #define DEFAULT_FTM_PRESCALE 0 #endif //void init_pins(void) void _init_Teensyduino_internal_(void) { #if defined(__MK20DX128__) || defined(__MK20DX256__) NVIC_ENABLE_IRQ(IRQ_PORTA); NVIC_ENABLE_IRQ(IRQ_PORTB); NVIC_ENABLE_IRQ(IRQ_PORTC); NVIC_ENABLE_IRQ(IRQ_PORTD); NVIC_ENABLE_IRQ(IRQ_PORTE); #elif defined(__MKL26Z64__) NVIC_ENABLE_IRQ(IRQ_PORTA); NVIC_ENABLE_IRQ(IRQ_PORTCD); #endif //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write //SIM_SCGC6 |= SIM_SCGC6_FTM1; FTM0_CNT = 0; FTM0_MOD = DEFAULT_FTM_MOD; FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10 FTM0_C1SC = 0x28; FTM0_C2SC = 0x28; FTM0_C3SC = 0x28; FTM0_C4SC = 0x28; FTM0_C5SC = 0x28; #if defined(__MK20DX128__) || defined(__MK20DX256__) FTM0_C6SC = 0x28; FTM0_C7SC = 0x28; #endif FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE); FTM1_CNT = 0; FTM1_MOD = DEFAULT_FTM_MOD; FTM1_C0SC = 0x28; FTM1_C1SC = 0x28; FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE); #if defined(__MK20DX256__) || defined(__MKL26Z64__) FTM2_CNT = 0; FTM2_MOD = DEFAULT_FTM_MOD; FTM2_C0SC = 0x28; FTM2_C1SC = 0x28; FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE); #endif analog_init(); //delay(100); // TODO: this is not necessary, right? delay(4); usb_init(); } #if defined(__MK20DX128__) #define FTM0_CH0_PIN 22 #define FTM0_CH1_PIN 23 #define FTM0_CH2_PIN 9 #define FTM0_CH3_PIN 10 #define FTM0_CH4_PIN 6 #define FTM0_CH5_PIN 20 #define FTM0_CH6_PIN 21 #define FTM0_CH7_PIN 5 #define FTM1_CH0_PIN 3 #define FTM1_CH1_PIN 4 #elif defined(__MK20DX256__) #define FTM0_CH0_PIN 22 #define FTM0_CH1_PIN 23 #define FTM0_CH2_PIN 9 #define FTM0_CH3_PIN 10 #define FTM0_CH4_PIN 6 #define FTM0_CH5_PIN 20 #define FTM0_CH6_PIN 21 #define FTM0_CH7_PIN 5 #define FTM1_CH0_PIN 3 #define FTM1_CH1_PIN 4 #define FTM2_CH0_PIN 32 #define FTM2_CH1_PIN 25 #elif defined(__MKL26Z64__) #define FTM0_CH0_PIN 22 #define FTM0_CH1_PIN 23 #define FTM0_CH2_PIN 9 #define FTM0_CH3_PIN 10 #define FTM0_CH4_PIN 6 #define FTM0_CH5_PIN 20 #define FTM1_CH0_PIN 16 #define FTM1_CH1_PIN 17 #define FTM2_CH0_PIN 3 #define FTM2_CH1_PIN 4 #endif #define FTM_PINCFG(pin) FTM_PINCFG2(pin) #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG static uint8_t analog_write_res = 8; // SOPT4 is SIM select clocks? // FTM is clocked by the bus clock, either 24 or 48 MHz // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz void analogWrite(uint8_t pin, int val) { uint32_t cval, max; #if defined(__MK20DX256__) if (pin == A14) { uint8_t res = analog_write_res; if (res < 12) { val <<= 12 - res; } else if (res > 12) { val >>= res - 12; } analogWriteDAC0(val); return; } #elif defined(__MKL26Z64__) if (pin == A12) { uint8_t res = analog_write_res; if (res < 12) { val <<= 12 - res; } else if (res > 12) { val >>= res - 12; } analogWriteDAC0(val); return; } #endif max = 1 << analog_write_res; if (val <= 0) { digitalWrite(pin, LOW); pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW return; } else if (val >= max) { digitalWrite(pin, HIGH); pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH return; } //serial_print("analogWrite\n"); //serial_print("val = "); //serial_phex32(val); //serial_print("\n"); //serial_print("analog_write_res = "); //serial_phex(analog_write_res); //serial_print("\n"); if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) { cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res; #if defined(FTM2_CH0_PIN) } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) { cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res; #endif } else { cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res; } //serial_print("cval = "); //serial_phex32(cval); //serial_print("\n"); switch (pin) { #ifdef FTM0_CH0_PIN case FTM0_CH0_PIN: // PTC1, FTM0_CH0 FTM0_C0V = cval; FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH1_PIN case FTM0_CH1_PIN: // PTC2, FTM0_CH1 FTM0_C1V = cval; FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH2_PIN case FTM0_CH2_PIN: // PTC3, FTM0_CH2 FTM0_C2V = cval; FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH3_PIN case FTM0_CH3_PIN: // PTC4, FTM0_CH3 FTM0_C3V = cval; FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH4_PIN case FTM0_CH4_PIN: // PTD4, FTM0_CH4 FTM0_C4V = cval; FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH5_PIN case FTM0_CH5_PIN: // PTD5, FTM0_CH5 FTM0_C5V = cval; FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH6_PIN case FTM0_CH6_PIN: // PTD6, FTM0_CH6 FTM0_C6V = cval; FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM0_CH7_PIN case FTM0_CH7_PIN: // PTD7, FTM0_CH7 FTM0_C7V = cval; FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM1_CH0_PIN case FTM1_CH0_PIN: // PTA12, FTM1_CH0 FTM1_C0V = cval; FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM1_CH1_PIN case FTM1_CH1_PIN: // PTA13, FTM1_CH1 FTM1_C1V = cval; FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM2_CH0_PIN case FTM2_CH0_PIN: // PTB18, FTM2_CH0 FTM2_C0V = cval; FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif #ifdef FTM2_CH1_PIN case FTM2_CH1_PIN: // PTB19, FTM1_CH1 FTM2_C1V = cval; FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE; break; #endif default: digitalWrite(pin, (val > 127) ? HIGH : LOW); pinMode(pin, OUTPUT); } } void analogWriteRes(uint32_t bits) { if (bits < 1) { bits = 1; } else if (bits > 16) { bits = 16; } analog_write_res = bits; } void analogWriteFrequency(uint8_t pin, uint32_t frequency) { uint32_t minfreq, prescale, mod; //serial_print("analogWriteFrequency: pin = "); //serial_phex(pin); //serial_print(", freq = "); //serial_phex32(frequency); //serial_print("\n"); for (prescale = 0; prescale < 7; prescale++) { minfreq = (F_TIMER >> 16) >> prescale; if (frequency > minfreq) break; } //serial_print("F_TIMER = "); //serial_phex32(F_TIMER >> prescale); //serial_print("\n"); //serial_print("prescale = "); //serial_phex(prescale); //serial_print("\n"); //mod = ((F_TIMER >> prescale) / frequency) - 1; mod = (((F_TIMER >> prescale) + (frequency >> 1)) / frequency) - 1; if (mod > 65535) mod = 65535; //serial_print("mod = "); //serial_phex32(mod); //serial_print("\n"); if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) { FTM1_SC = 0; FTM1_CNT = 0; FTM1_MOD = mod; FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale); } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN #ifdef FTM0_CH6_PIN || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN #endif ) { FTM0_SC = 0; FTM0_CNT = 0; FTM0_MOD = mod; FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale); } #ifdef FTM2_CH0_PIN else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) { FTM2_SC = 0; FTM2_CNT = 0; FTM2_MOD = mod; FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale); } #endif } // TODO: startup code needs to initialize all pins to GPIO mode, input by default void digitalWrite(uint8_t pin, uint8_t val) { if (pin >= CORE_NUM_DIGITAL) return; #ifdef KINETISK if (*portModeRegister(pin)) { if (val) { *portSetRegister(pin) = 1; } else { *portClearRegister(pin) = 1; } #else if (*portModeRegister(pin) & digitalPinToBitMask(pin)) { if (val) { *portSetRegister(pin) = digitalPinToBitMask(pin); } else { *portClearRegister(pin) = digitalPinToBitMask(pin); } #endif } else { volatile uint32_t *config = portConfigRegister(pin); if (val) { // TODO use bitband for atomic read-mod-write *config |= (PORT_PCR_PE | PORT_PCR_PS); //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; } else { // TODO use bitband for atomic read-mod-write *config &= ~(PORT_PCR_PE); //*config = PORT_PCR_MUX(1); } } } uint8_t digitalRead(uint8_t pin) { if (pin >= CORE_NUM_DIGITAL) return 0; #ifdef KINETISK return *portInputRegister(pin); #else return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0; #endif } void pinMode(uint8_t pin, uint8_t mode) { volatile uint32_t *config; if (pin >= CORE_NUM_DIGITAL) return; config = portConfigRegister(pin); if (mode == OUTPUT) { #ifdef KINETISK *portModeRegister(pin) = 1; #else *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic #endif *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); } else { #ifdef KINETISK *portModeRegister(pin) = 0; #else *portModeRegister(pin) &= ~digitalPinToBitMask(pin); #endif if (mode == INPUT) { *config = PORT_PCR_MUX(1); } else { *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup } } } void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value) { if (bitOrder == LSBFIRST) { shiftOut_lsbFirst(dataPin, clockPin, value); } else { shiftOut_msbFirst(dataPin, clockPin, value); } } void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value) { uint8_t mask; for (mask=0x01; mask; mask <<= 1) { digitalWrite(dataPin, value & mask); digitalWrite(clockPin, HIGH); digitalWrite(clockPin, LOW); } } void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value) { uint8_t mask; for (mask=0x80; mask; mask >>= 1) { digitalWrite(dataPin, value & mask); digitalWrite(clockPin, HIGH); digitalWrite(clockPin, LOW); } } uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) { if (bitOrder == LSBFIRST) { return shiftIn_lsbFirst(dataPin, clockPin); } else { return shiftIn_msbFirst(dataPin, clockPin); } } uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin) { uint8_t mask, value=0; for (mask=0x01; mask; mask <<= 1) { digitalWrite(clockPin, HIGH); if (digitalRead(dataPin)) value |= mask; digitalWrite(clockPin, LOW); } return value; } uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin) { uint8_t mask, value=0; for (mask=0x80; mask; mask >>= 1) { digitalWrite(clockPin, HIGH); if (digitalRead(dataPin)) value |= mask; digitalWrite(clockPin, LOW); } return value; } // the systick interrupt is supposed to increment this at 1 kHz rate volatile uint32_t systick_millis_count = 0; //uint32_t systick_current, systick_count, systick_istatus; // testing only uint32_t micros(void) { uint32_t count, current, istatus; __disable_irq(); current = SYST_CVR; count = systick_millis_count; istatus = SCB_ICSR; // bit 26 indicates if systick exception pending __enable_irq(); //systick_current = current; //systick_count = count; //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0; if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++; current = ((F_CPU / 1000) - 1) - current; return count * 1000 + current / (F_CPU / 1000000); } void delay(uint32_t ms) { uint32_t start = micros(); if (ms > 0) { while (1) { if ((micros() - start) >= 1000) { ms--; if (ms == 0) return; start += 1000; } yield(); } } } // TODO: verify these result in correct timeouts... #if F_CPU == 168000000 #define PULSEIN_LOOPS_PER_USEC 25 #elif F_CPU == 144000000 #define PULSEIN_LOOPS_PER_USEC 21 #elif F_CPU == 120000000 #define PULSEIN_LOOPS_PER_USEC 18 #elif F_CPU == 96000000 #define PULSEIN_LOOPS_PER_USEC 14 #elif F_CPU == 72000000 #define PULSEIN_LOOPS_PER_USEC 10 #elif F_CPU == 48000000 #define PULSEIN_LOOPS_PER_USEC 7 #elif F_CPU == 24000000 #define PULSEIN_LOOPS_PER_USEC 4 #elif F_CPU == 16000000 #define PULSEIN_LOOPS_PER_USEC 1 #elif F_CPU == 8000000 #define PULSEIN_LOOPS_PER_USEC 1 #elif F_CPU == 4000000 #define PULSEIN_LOOPS_PER_USEC 1 #elif F_CPU == 2000000 #define PULSEIN_LOOPS_PER_USEC 1 #endif uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout) { uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC; uint32_t usec_start, usec_stop; // wait for any previous pulse to end while (*reg) { if (--timeout_count == 0) return 0; } // wait for the pulse to start while (!*reg) { if (--timeout_count == 0) return 0; } usec_start = micros(); // wait for the pulse to stop while (*reg) { if (--timeout_count == 0) return 0; } usec_stop = micros(); return usec_stop - usec_start; } uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout) { uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC; uint32_t usec_start, usec_stop; // wait for any previous pulse to end while (!*reg) { if (--timeout_count == 0) return 0; } // wait for the pulse to start while (*reg) { if (--timeout_count == 0) return 0; } usec_start = micros(); // wait for the pulse to stop while (!*reg) { if (--timeout_count == 0) return 0; } usec_stop = micros(); return usec_stop - usec_start; } // TODO: an inline version should handle the common case where state is const uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout) { if (pin >= CORE_NUM_DIGITAL) return 0; if (state) return pulseIn_high(portInputRegister(pin), timeout); return pulseIn_low(portInputRegister(pin), timeout);; }