/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ // alternate version supporting RTS by disable of receive interrupt // https://forum.pjrc.com/threads/30536-Complete-implementation-of-UART-hardware-flow-control // https://forum.pjrc.com/threads/29446-Teensy-Hardware-Flow-Control-RTS-CTS/page2 #include "kinetis.h" #include "core_pins.h" #include "HardwareSerial.h" //////////////////////////////////////////////////////////////// // Tunable parameters (relatively safe to edit these numbers) //////////////////////////////////////////////////////////////// #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest //////////////////////////////////////////////////////////////// // changes not recommended below this point.... //////////////////////////////////////////////////////////////// #ifdef SERIAL_9BIT_SUPPORT static uint8_t use9Bits = 0; #define BUFTYPE uint16_t #else #define BUFTYPE uint8_t #define use9Bits 0 #endif static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE]; static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE]; static volatile uint8_t transmitting = 0; #if defined(KINETISK) static volatile uint8_t *transmit_pin=NULL; #define transmit_assert() *transmit_pin = 1 #define transmit_deassert() *transmit_pin = 0 #elif defined(KINETISL) static volatile uint8_t *transmit_pin=NULL; static uint8_t transmit_mask=0; #define transmit_assert() *(transmit_pin+4) = transmit_mask; #define transmit_deassert() *(transmit_pin+8) = transmit_mask; #endif #if TX_BUFFER_SIZE > 255 static volatile uint16_t tx_buffer_head = 0; static volatile uint16_t tx_buffer_tail = 0; #else static volatile uint8_t tx_buffer_head = 0; static volatile uint8_t tx_buffer_tail = 0; #endif #if RX_BUFFER_SIZE > 255 static volatile uint16_t rx_buffer_head = 0; static volatile uint16_t rx_buffer_tail = 0; #else static volatile uint8_t rx_buffer_head = 0; static volatile uint8_t rx_buffer_tail = 0; #endif // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer void serial_begin(uint32_t divisor) { SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband rx_buffer_head = 0; rx_buffer_tail = 0; tx_buffer_head = 0; tx_buffer_tail = 0; transmitting = 0; CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); #if defined(HAS_KINETISK_UART0) UART0_BDH = (divisor >> 13) & 0x1F; UART0_BDL = (divisor >> 5) & 0xFF; UART0_C4 = divisor & 0x1F; #ifdef HAS_KINETISK_UART0_FIFO UART0_C1 = UART_C1_ILT; UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE; #else UART0_C1 = 0; UART0_PFIFO = 0; #endif #elif defined(HAS_KINETISL_UART0) UART0_BDH = (divisor >> 8) & 0x1F; UART0_BDL = divisor & 0xFF; UART0_C1 = 0; #endif UART0_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE; NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY); NVIC_ENABLE_IRQ(IRQ_UART0_STATUS); } void serial_format(uint32_t format) { uint8_t c; c = UART0_C1; c = (c & ~0x13) | (format & 0x03); // configure parity if (format & 0x04) c |= 0x10; // 9 bits (might include parity) UART0_C1 = c; if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1 c = UART0_S2 & ~0x10; if (format & 0x10) c |= 0x10; // rx invert UART0_S2 = c; c = UART0_C3 & ~0x10; if (format & 0x20) c |= 0x10; // tx invert UART0_C3 = c; #ifdef SERIAL_9BIT_SUPPORT c = UART0_C4 & 0x1F; if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits) UART0_C4 = c; use9Bits = format & 0x80; #endif } void serial_end(void) { if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; while (transmitting) yield(); // wait for buffered data to send NVIC_DISABLE_IRQ(IRQ_UART0_STATUS); UART0_C2 = 0; CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); rx_buffer_head = 0; rx_buffer_tail = 0; } void serial_set_transmit_pin(uint8_t pin) { while (transmitting) ; pinMode(pin, OUTPUT); digitalWrite(pin, LOW); transmit_pin = portOutputRegister(pin); #if defined(KINETISL) transmit_mask = digitalPinToBitMask(pin); #endif } int serial_set_rts(uint8_t pin) { if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; if (pin == 6) { CORE_PIN6_CONFIG = PORT_PCR_MUX(3); } else if (pin == 19) { CORE_PIN19_CONFIG = PORT_PCR_MUX(3); } else { UART0_MODEM &= ~UART_MODEM_RXRTSE; return 0; } UART0_MODEM |= UART_MODEM_RXRTSE; return 1; } int serial_set_cts(uint8_t pin) { if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; if (pin == 18) { CORE_PIN18_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? } else if (pin == 20) { CORE_PIN20_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? } else { UART0_MODEM &= ~UART_MODEM_TXCTSE; return 0; } UART0_MODEM |= UART_MODEM_TXCTSE; return 1; } void serial_putchar(uint32_t c) { uint32_t head, n; if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; if (transmit_pin) transmit_assert(); head = tx_buffer_head; if (++head >= TX_BUFFER_SIZE) head = 0; while (tx_buffer_tail == head) { int priority = nvic_execution_priority(); if (priority <= IRQ_PRIORITY) { if ((UART0_S1 & UART_S1_TDRE)) { uint32_t tail = tx_buffer_tail; if (++tail >= TX_BUFFER_SIZE) tail = 0; n = tx_buffer[tail]; if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); UART0_D = n; tx_buffer_tail = tail; } } else if (priority >= 256) { yield(); } } tx_buffer[head] = c; transmitting = 1; tx_buffer_head = head; UART0_C2 |= UART_C2_TIE; UART0_C2 &= ~UART_C2_TCIE; } #ifdef HAS_KINETISK_UART0_FIFO void serial_write(const void *buf, unsigned int count) { const uint8_t *p = (const uint8_t *)buf; const uint8_t *end = p + count; uint32_t head, n; if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; if (transmit_pin) transmit_assert(); while (p < end) { head = tx_buffer_head; if (++head >= TX_BUFFER_SIZE) head = 0; if (tx_buffer_tail == head) { UART0_C2 |= UART_C2_TIE; UART0_C2 &= ~UART_C2_TCIE; do { int priority = nvic_execution_priority(); if (priority <= IRQ_PRIORITY) { if ((UART0_S1 & UART_S1_TDRE)) { uint32_t tail = tx_buffer_tail; if (++tail >= TX_BUFFER_SIZE) tail = 0; n = tx_buffer[tail]; if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); UART0_D = n; tx_buffer_tail = tail; } } else if (priority >= 256) { yield(); } } while (tx_buffer_tail == head); } tx_buffer[head] = *p++; transmitting = 1; tx_buffer_head = head; } UART0_C2 |= UART_C2_TIE; UART0_C2 &= ~UART_C2_TCIE; } #else void serial_write(const void *buf, unsigned int count) { const uint8_t *p = (const uint8_t *)buf; while (count-- > 0) serial_putchar(*p++); } #endif void serial_flush(void) { while (transmitting) yield(); // wait } int serial_write_buffer_free(void) { uint32_t head, tail; head = tx_buffer_head; tail = tx_buffer_tail; if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail; return tail - head - 1; } int serial_available(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head >= tail) return head - tail; return RX_BUFFER_SIZE + head - tail; } int serial_getchar(void) { uint32_t head, tail; int c; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= RX_BUFFER_SIZE) tail = 0; c = rx_buffer[tail]; rx_buffer_tail = tail; #ifdef HAS_KINETISK_UART0_FIFO if ((UART0_C2 & (UART_C2_RIE | UART_C2_ILIE))==0) {//rx interrupt currently disabled int freespace; if (head >= tail) //rx head and tail would be unchanged from above if interrupts were disabled freespace = RX_BUFFER_SIZE -1 + tail - head; else freespace = tail - head - 1; if (freespace >= UART0_RCFIFO) { UART0_C2 |= (UART_C2_RIE | UART_C2_ILIE);//enable rx interrupts } } #else UART0_C2 |= UART_C2_RIE; #endif return c; } int serial_peek(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= RX_BUFFER_SIZE) tail = 0; return rx_buffer[tail]; } void serial_clear(void) { #ifdef HAS_KINETISK_UART0_FIFO if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); UART0_CFIFO = UART_CFIFO_RXFLUSH; UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); #endif rx_buffer_head = rx_buffer_tail; } // status interrupt combines // Transmit data below watermark UART_S1_TDRE // Transmit complete UART_S1_TC // Idle line UART_S1_IDLE // Receive data above watermark UART_S1_RDRF // LIN break detect UART_S2_LBKDIF // RxD pin active edge UART_S2_RXEDGIF void uart0_status_isr(void) { uint32_t head, tail, n; uint8_t c; #ifdef HAS_KINETISK_UART0_FIFO uint32_t newhead; if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) { if (UART0_RCFIFO == 0) { // The only way to clear the IDLE interrupt flag is // to read the data register. But reading with no // data causes a FIFO underrun, which causes the // FIFO to return corrupted data. If anyone from // Freescale reads this, what a poor design! There // write should be a write-1-to-clear for IDLE. c = UART0_D; // flushing the fifo recovers from the underrun, // but there's a possible race condition where a // new character could be received between reading // RCFIFO == 0 and flushing the FIFO. To minimize // the chance, interrupts are disabled so a higher // priority interrupt (hopefully) doesn't delay. // TODO: change this to disabling the IDLE interrupt // which won't be simple, since we already manage // which transmit interrupts are enabled. __disable_irq(); UART0_CFIFO = UART_CFIFO_RXFLUSH; __enable_irq(); } else { head = rx_buffer_head; tail = rx_buffer_tail; do { newhead = head + 1; if (newhead >= RX_BUFFER_SIZE) newhead = 0; if (UART0_MODEM & UART_MODEM_RXRTSE) { if (newhead == tail) { UART0_C2 &= ~(UART_C2_RIE | UART_C2_ILIE);//disable rx interrupts break; } } if (UART0_RCFIFO==1) UART0_S1; //as per page 1214 of datasheet regarding resetting of RDRF flag if (use9Bits && (UART0_C3 & 0x80)) { n = UART0_D | 0x100; } else { n = UART0_D; } head = newhead; rx_buffer[head] = n; } while (UART0_RCFIFO); rx_buffer_head = head; } } c = UART0_C2; if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { head = tx_buffer_head; tail = tx_buffer_tail; do { if (tail == head) break; if (++tail >= TX_BUFFER_SIZE) tail = 0; UART0_S1; n = tx_buffer[tail]; if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); UART0_D = n; } while (UART0_TCFIFO < 8); tx_buffer_tail = tail; if (UART0_S1 & UART_S1_TDRE) { UART0_C2 |= UART_C2_TCIE; UART0_C2 &= ~UART_C2_TIE; } } #else if (UART0_S1 & UART_S1_RDRF) { do { head = rx_buffer_head + 1; if (head >= RX_BUFFER_SIZE) head = 0; if (UART0_MODEM & UART_MODEM_RXRTSE) { if (head == rx_buffer_tail) { UART0_C2 &= ~(UART_C2_RIE);//disable rx interrupts break; } } n = UART0_D; if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100; rx_buffer[head] = n; rx_buffer_head = head; break; } while (true); } c = UART0_C2; if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { head = tx_buffer_head; tail = tx_buffer_tail; if (head == tail) { UART0_C2 |= UART_C2_TCIE; UART0_C2 &= ~UART_C2_TIE; } else { if (++tail >= TX_BUFFER_SIZE) tail = 0; n = tx_buffer[tail]; if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); UART0_D = n; tx_buffer_tail = tail; } } #endif if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) { transmitting = 0; if (transmit_pin) transmit_deassert(); UART0_C2 &= ~(UART_C2_TCIE | UART_C2_TIE); } } void serial_print(const char *p) { while (*p) { char c = *p++; if (c == '\n') serial_putchar('\r'); serial_putchar(c); } } static void serial_phex1(uint32_t n) { n &= 15; if (n < 10) { serial_putchar('0' + n); } else { serial_putchar('A' - 10 + n); } } void serial_phex(uint32_t n) { serial_phex1(n >> 4); serial_phex1(n); } void serial_phex16(uint32_t n) { serial_phex(n >> 8); serial_phex(n); } void serial_phex32(uint32_t n) { serial_phex(n >> 24); serial_phex(n >> 16); serial_phex(n >> 8); serial_phex(n); }