#include "imxrt.h" #include "wiring.h" #include "usb_dev.h" #include "avr/pgmspace.h" #include "debug/printf.h" // from the linker extern unsigned long _stextload; extern unsigned long _stext; extern unsigned long _etext; extern unsigned long _sdataload; extern unsigned long _sdata; extern unsigned long _edata; extern unsigned long _sbss; extern unsigned long _ebss; extern unsigned long _flexram_bank_config; extern unsigned long _estack; __attribute__ ((used, aligned(1024))) void (* _VectorsRam[NVIC_NUM_INTERRUPTS+16])(void); static void memory_copy(uint32_t *dest, const uint32_t *src, uint32_t *dest_end); static void memory_clear(uint32_t *dest, uint32_t *dest_end); static void configure_systick(void); static void reset_PFD(); extern void systick_isr(void); extern void pendablesrvreq_isr(void); void configure_cache(void); void configure_external_ram(void); void unused_interrupt_vector(void); void usb_pll_start(); extern void analog_init(void); // analog.c extern void pwm_init(void); // pwm.c extern void tempmon_init(void); //tempmon.c uint32_t set_arm_clock(uint32_t frequency); // clockspeed.c extern void __libc_init_array(void); // C++ standard library uint8_t external_psram_size = 0; extern int main (void); void startup_default_early_hook(void) {} void startup_early_hook(void) __attribute__ ((weak, alias("startup_default_early_hook"))); void startup_default_late_hook(void) {} void startup_late_hook(void) __attribute__ ((weak, alias("startup_default_late_hook"))); __attribute__((section(".startup"), optimize("no-tree-loop-distribute-patterns"))) void ResetHandler(void) { unsigned int i; #if defined(__IMXRT1062__) IOMUXC_GPR_GPR17 = (uint32_t)&_flexram_bank_config; IOMUXC_GPR_GPR16 = 0x00200007; IOMUXC_GPR_GPR14 = 0x00AA0000; __asm__ volatile("mov sp, %0" : : "r" ((uint32_t)&_estack) : ); #endif PMU_MISC0_SET = 1<<3; //Use bandgap-based bias currents for best performance (Page 1175) // pin 13 - if startup crashes, use this to turn on the LED early for troubleshooting //IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_03 = 5; //IOMUXC_SW_PAD_CTL_PAD_GPIO_B0_03 = IOMUXC_PAD_DSE(7); //IOMUXC_GPR_GPR27 = 0xFFFFFFFF; //GPIO7_GDIR |= (1<<3); //GPIO7_DR_SET = (1<<3); // digitalWrite(13, HIGH); // Initialize memory memory_copy(&_stext, &_stextload, &_etext); memory_copy(&_sdata, &_sdataload, &_edata); memory_clear(&_sbss, &_ebss); // enable FPU SCB_CPACR = 0x00F00000; // set up blank interrupt & exception vector table for (i=0; i < NVIC_NUM_INTERRUPTS + 16; i++) _VectorsRam[i] = &unused_interrupt_vector; for (i=0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_PRIORITY(i, 128); SCB_VTOR = (uint32_t)_VectorsRam; reset_PFD(); // Configure clocks // TODO: make sure all affected peripherals are turned off! // PIT & GPT timers to run from 24 MHz clock (independent of CPU speed) CCM_CSCMR1 = (CCM_CSCMR1 & ~CCM_CSCMR1_PERCLK_PODF(0x3F)) | CCM_CSCMR1_PERCLK_CLK_SEL; // UARTs run from 24 MHz clock (works if PLL3 off or bypassed) CCM_CSCDR1 = (CCM_CSCDR1 & ~CCM_CSCDR1_UART_CLK_PODF(0x3F)) | CCM_CSCDR1_UART_CLK_SEL; #if defined(__IMXRT1062__) // Use fast GPIO6, GPIO7, GPIO8, GPIO9 IOMUXC_GPR_GPR26 = 0xFFFFFFFF; IOMUXC_GPR_GPR27 = 0xFFFFFFFF; IOMUXC_GPR_GPR28 = 0xFFFFFFFF; IOMUXC_GPR_GPR29 = 0xFFFFFFFF; #endif // must enable PRINT_DEBUG_STUFF in debug/print.h printf_debug_init(); printf("\n***********IMXRT Startup**********\n"); printf("test %d %d %d\n", 1, -1234567, 3); configure_cache(); configure_systick(); usb_pll_start(); reset_PFD(); //TODO: is this really needed? #ifdef F_CPU set_arm_clock(F_CPU); #endif // Undo PIT timer usage by ROM startup CCM_CCGR1 |= CCM_CCGR1_PIT(CCM_CCGR_ON); PIT_MCR = 0; PIT_TCTRL0 = 0; PIT_TCTRL1 = 0; PIT_TCTRL2 = 0; PIT_TCTRL3 = 0; // initialize RTC if (!(SNVS_LPCR & SNVS_LPCR_SRTC_ENV)) { // if SRTC isn't running, start it with default Jan 1, 2019 SNVS_LPSRTCLR = 1546300800u << 15; SNVS_LPSRTCMR = 1546300800u >> 17; SNVS_LPCR |= SNVS_LPCR_SRTC_ENV; } SNVS_HPCR |= SNVS_HPCR_RTC_EN | SNVS_HPCR_HP_TS; #ifdef ARDUINO_TEENSY41 configure_external_ram(); #endif startup_early_hook(); while (millis() < 20) ; // wait at least 20ms before starting USB usb_init(); analog_init(); pwm_init(); tempmon_init(); startup_late_hook(); while (millis() < 300) ; // wait at least 300ms before calling user code //printf("before C++ constructors\n"); __libc_init_array(); //printf("after C++ constructors\n"); //printf("before setup\n"); main(); while (1) ; } // ARM SysTick is used for most Ardiuno timing functions, delay(), millis(), // micros(). SysTick can run from either the ARM core clock, or from an // "external" clock. NXP documents it as "24 MHz XTALOSC can be the external // clock source of SYSTICK" (RT1052 ref manual, rev 1, page 411). However, // NXP actually hid an undocumented divide-by-240 circuit in the hardware, so // the external clock is really 100 kHz. We use this clock rather than the // ARM clock, to allow SysTick to maintain correct timing even when we change // the ARM clock to run at different speeds. #define SYSTICK_EXT_FREQ 100000 extern volatile uint32_t systick_cycle_count; static void configure_systick(void) { _VectorsRam[14] = pendablesrvreq_isr; _VectorsRam[15] = systick_isr; SYST_RVR = (SYSTICK_EXT_FREQ / 1000) - 1; SYST_CVR = 0; SYST_CSR = SYST_CSR_TICKINT | SYST_CSR_ENABLE; SCB_SHPR3 = 0x20200000; // Systick, pendablesrvreq_isr = priority 32; ARM_DEMCR |= ARM_DEMCR_TRCENA; ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA; // turn on cycle counter systick_cycle_count = ARM_DWT_CYCCNT; // compiled 0, corrected w/1st systick } // concise defines for SCB_MPU_RASR and SCB_MPU_RBAR, ARM DDI0403E, pg 696 #define NOEXEC SCB_MPU_RASR_XN #define READONLY SCB_MPU_RASR_AP(7) #define READWRITE SCB_MPU_RASR_AP(3) #define NOACCESS SCB_MPU_RASR_AP(0) #define MEM_CACHE_WT SCB_MPU_RASR_TEX(0) | SCB_MPU_RASR_C #define MEM_CACHE_WB SCB_MPU_RASR_TEX(0) | SCB_MPU_RASR_C | SCB_MPU_RASR_B #define MEM_CACHE_WBWA SCB_MPU_RASR_TEX(1) | SCB_MPU_RASR_C | SCB_MPU_RASR_B #define MEM_NOCACHE SCB_MPU_RASR_TEX(1) #define DEV_NOCACHE SCB_MPU_RASR_TEX(2) #define SIZE_32B (SCB_MPU_RASR_SIZE(4) | SCB_MPU_RASR_ENABLE) #define SIZE_64B (SCB_MPU_RASR_SIZE(5) | SCB_MPU_RASR_ENABLE) #define SIZE_128B (SCB_MPU_RASR_SIZE(6) | SCB_MPU_RASR_ENABLE) #define SIZE_256B (SCB_MPU_RASR_SIZE(7) | SCB_MPU_RASR_ENABLE) #define SIZE_512B (SCB_MPU_RASR_SIZE(8) | SCB_MPU_RASR_ENABLE) #define SIZE_1K (SCB_MPU_RASR_SIZE(9) | SCB_MPU_RASR_ENABLE) #define SIZE_2K (SCB_MPU_RASR_SIZE(10) | SCB_MPU_RASR_ENABLE) #define SIZE_4K (SCB_MPU_RASR_SIZE(11) | SCB_MPU_RASR_ENABLE) #define SIZE_8K (SCB_MPU_RASR_SIZE(12) | SCB_MPU_RASR_ENABLE) #define SIZE_16K (SCB_MPU_RASR_SIZE(13) | SCB_MPU_RASR_ENABLE) #define SIZE_32K (SCB_MPU_RASR_SIZE(14) | SCB_MPU_RASR_ENABLE) #define SIZE_64K (SCB_MPU_RASR_SIZE(15) | SCB_MPU_RASR_ENABLE) #define SIZE_128K (SCB_MPU_RASR_SIZE(16) | SCB_MPU_RASR_ENABLE) #define SIZE_256K (SCB_MPU_RASR_SIZE(17) | SCB_MPU_RASR_ENABLE) #define SIZE_512K (SCB_MPU_RASR_SIZE(18) | SCB_MPU_RASR_ENABLE) #define SIZE_1M (SCB_MPU_RASR_SIZE(19) | SCB_MPU_RASR_ENABLE) #define SIZE_2M (SCB_MPU_RASR_SIZE(20) | SCB_MPU_RASR_ENABLE) #define SIZE_4M (SCB_MPU_RASR_SIZE(21) | SCB_MPU_RASR_ENABLE) #define SIZE_8M (SCB_MPU_RASR_SIZE(22) | SCB_MPU_RASR_ENABLE) #define SIZE_16M (SCB_MPU_RASR_SIZE(23) | SCB_MPU_RASR_ENABLE) #define SIZE_32M (SCB_MPU_RASR_SIZE(24) | SCB_MPU_RASR_ENABLE) #define SIZE_64M (SCB_MPU_RASR_SIZE(25) | SCB_MPU_RASR_ENABLE) #define SIZE_128M (SCB_MPU_RASR_SIZE(26) | SCB_MPU_RASR_ENABLE) #define SIZE_256M (SCB_MPU_RASR_SIZE(27) | SCB_MPU_RASR_ENABLE) #define SIZE_512M (SCB_MPU_RASR_SIZE(28) | SCB_MPU_RASR_ENABLE) #define SIZE_1G (SCB_MPU_RASR_SIZE(29) | SCB_MPU_RASR_ENABLE) #define SIZE_2G (SCB_MPU_RASR_SIZE(30) | SCB_MPU_RASR_ENABLE) #define SIZE_4G (SCB_MPU_RASR_SIZE(31) | SCB_MPU_RASR_ENABLE) #define REGION(n) (SCB_MPU_RBAR_REGION(n) | SCB_MPU_RBAR_VALID) FLASHMEM void configure_cache(void) { //printf("MPU_TYPE = %08lX\n", SCB_MPU_TYPE); //printf("CCR = %08lX\n", SCB_CCR); // TODO: check if caches already active - skip? SCB_MPU_CTRL = 0; // turn off MPU uint32_t i = 0; SCB_MPU_RBAR = 0x00000000 | REGION(i++); //https://developer.arm.com/docs/146793866/10/why-does-the-cortex-m7-initiate-axim-read-accesses-to-memory-addresses-that-do-not-fall-under-a-defined-mpu-region SCB_MPU_RASR = SCB_MPU_RASR_TEX(0) | NOACCESS | NOEXEC | SIZE_4G; SCB_MPU_RBAR = 0x00000000 | REGION(i++); // ITCM SCB_MPU_RASR = MEM_NOCACHE | READWRITE | SIZE_512K; // TODO: trap regions should be created last, because the hardware gives // priority to the higher number ones. SCB_MPU_RBAR = 0x00000000 | REGION(i++); // trap NULL pointer deref SCB_MPU_RASR = DEV_NOCACHE | NOACCESS | SIZE_32B; SCB_MPU_RBAR = 0x00200000 | REGION(i++); // Boot ROM SCB_MPU_RASR = MEM_CACHE_WT | READONLY | SIZE_128K; SCB_MPU_RBAR = 0x20000000 | REGION(i++); // DTCM SCB_MPU_RASR = MEM_NOCACHE | READWRITE | NOEXEC | SIZE_512K; SCB_MPU_RBAR = ((uint32_t)&_ebss) | REGION(i++); // trap stack overflow SCB_MPU_RASR = SCB_MPU_RASR_TEX(0) | NOACCESS | NOEXEC | SIZE_32B; SCB_MPU_RBAR = 0x20200000 | REGION(i++); // RAM (AXI bus) SCB_MPU_RASR = MEM_CACHE_WBWA | READWRITE | NOEXEC | SIZE_1M; SCB_MPU_RBAR = 0x40000000 | REGION(i++); // Peripherals SCB_MPU_RASR = DEV_NOCACHE | READWRITE | NOEXEC | SIZE_64M; SCB_MPU_RBAR = 0x60000000 | REGION(i++); // QSPI Flash SCB_MPU_RASR = MEM_CACHE_WBWA | READONLY | SIZE_16M; SCB_MPU_RBAR = 0x70000000 | REGION(i++); // FlexSPI2 SCB_MPU_RASR = MEM_CACHE_WBWA | READONLY | NOEXEC | SIZE_256M; SCB_MPU_RBAR = 0x70000000 | REGION(i++); // FlexSPI2 SCB_MPU_RASR = MEM_CACHE_WBWA | READWRITE | NOEXEC | SIZE_16M; // TODO: protect access to power supply config SCB_MPU_CTRL = SCB_MPU_CTRL_ENABLE; // cache enable, ARM DDI0403E, pg 628 asm("dsb"); asm("isb"); SCB_CACHE_ICIALLU = 0; asm("dsb"); asm("isb"); SCB_CCR |= (SCB_CCR_IC | SCB_CCR_DC); } #ifdef ARDUINO_TEENSY41 #define LUT0(opcode, pads, operand) (FLEXSPI_LUT_INSTRUCTION((opcode), (pads), (operand))) #define LUT1(opcode, pads, operand) (FLEXSPI_LUT_INSTRUCTION((opcode), (pads), (operand)) << 16) #define CMD_SDR FLEXSPI_LUT_OPCODE_CMD_SDR #define ADDR_SDR FLEXSPI_LUT_OPCODE_RADDR_SDR #define READ_SDR FLEXSPI_LUT_OPCODE_READ_SDR #define WRITE_SDR FLEXSPI_LUT_OPCODE_WRITE_SDR #define DUMMY_SDR FLEXSPI_LUT_OPCODE_DUMMY_SDR #define PINS1 FLEXSPI_LUT_NUM_PADS_1 #define PINS4 FLEXSPI_LUT_NUM_PADS_4 FLASHMEM static void flexspi2_command(uint32_t index, uint32_t addr) { FLEXSPI2_IPCR0 = addr; FLEXSPI2_IPCR1 = FLEXSPI_IPCR1_ISEQID(index); FLEXSPI2_IPCMD = FLEXSPI_IPCMD_TRG; while (!(FLEXSPI2_INTR & FLEXSPI_INTR_IPCMDDONE)); // wait FLEXSPI2_INTR = FLEXSPI_INTR_IPCMDDONE; } FLASHMEM static uint32_t flexspi2_psram_id(uint32_t addr) { FLEXSPI2_IPCR0 = addr; FLEXSPI2_IPCR1 = FLEXSPI_IPCR1_ISEQID(3) | FLEXSPI_IPCR1_IDATSZ(4); FLEXSPI2_IPCMD = FLEXSPI_IPCMD_TRG; while (!(FLEXSPI2_INTR & FLEXSPI_INTR_IPCMDDONE)); // wait uint32_t id = FLEXSPI2_RFDR0; FLEXSPI2_INTR = FLEXSPI_INTR_IPCMDDONE | FLEXSPI_INTR_IPRXWA; return id & 0xFFFF; } FLASHMEM void configure_external_ram() { // initialize pins IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_22 = 0x1B0F9; // 100K pullup, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_23 = 0x110F9; // keeper, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_24 = 0x1B0F9; // 100K pullup, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_25 = 0x100F9; // strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_26 = 0x170F9; // 47K pullup, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_27 = 0x170F9; // 47K pullup, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_28 = 0x170F9; // 47K pullup, strong drive, max speed, hyst IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_29 = 0x170F9; // 47K pullup, strong drive, max speed, hyst IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_22 = 8 | 0x10; // ALT1 = FLEXSPI2_A_SS1_B (Flash) IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_23 = 8 | 0x10; // ALT1 = FLEXSPI2_A_DQS IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_24 = 8 | 0x10; // ALT1 = FLEXSPI2_A_SS0_B (RAM) IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_25 = 8 | 0x10; // ALT1 = FLEXSPI2_A_SCLK IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_26 = 8 | 0x10; // ALT1 = FLEXSPI2_A_DATA0 IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_27 = 8 | 0x10; // ALT1 = FLEXSPI2_A_DATA1 IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_28 = 8 | 0x10; // ALT1 = FLEXSPI2_A_DATA2 IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_29 = 8 | 0x10; // ALT1 = FLEXSPI2_A_DATA3 IOMUXC_FLEXSPI2_IPP_IND_DQS_FA_SELECT_INPUT = 1; // GPIO_EMC_23 for Mode: ALT8, pg 986 IOMUXC_FLEXSPI2_IPP_IND_IO_FA_BIT0_SELECT_INPUT = 1; // GPIO_EMC_26 for Mode: ALT8 IOMUXC_FLEXSPI2_IPP_IND_IO_FA_BIT1_SELECT_INPUT = 1; // GPIO_EMC_27 for Mode: ALT8 IOMUXC_FLEXSPI2_IPP_IND_IO_FA_BIT2_SELECT_INPUT = 1; // GPIO_EMC_28 for Mode: ALT8 IOMUXC_FLEXSPI2_IPP_IND_IO_FA_BIT3_SELECT_INPUT = 1; // GPIO_EMC_29 for Mode: ALT8 IOMUXC_FLEXSPI2_IPP_IND_SCK_FA_SELECT_INPUT = 1; // GPIO_EMC_25 for Mode: ALT8 // turn on clock (TODO: increase clock speed later, slow & cautious for first release) CCM_CBCMR = (CCM_CBCMR & ~(CCM_CBCMR_FLEXSPI2_PODF_MASK | CCM_CBCMR_FLEXSPI2_CLK_SEL_MASK)) | CCM_CBCMR_FLEXSPI2_PODF(5) | CCM_CBCMR_FLEXSPI2_CLK_SEL(3); // 88 MHz CCM_CCGR7 |= CCM_CCGR7_FLEXSPI2(CCM_CCGR_ON); FLEXSPI2_MCR0 |= FLEXSPI_MCR0_MDIS; FLEXSPI2_MCR0 = (FLEXSPI2_MCR0 & ~(FLEXSPI_MCR0_AHBGRANTWAIT_MASK | FLEXSPI_MCR0_IPGRANTWAIT_MASK | FLEXSPI_MCR0_SCKFREERUNEN | FLEXSPI_MCR0_COMBINATIONEN | FLEXSPI_MCR0_DOZEEN | FLEXSPI_MCR0_HSEN | FLEXSPI_MCR0_ATDFEN | FLEXSPI_MCR0_ARDFEN | FLEXSPI_MCR0_RXCLKSRC_MASK | FLEXSPI_MCR0_SWRESET)) | FLEXSPI_MCR0_AHBGRANTWAIT(0xFF) | FLEXSPI_MCR0_IPGRANTWAIT(0xFF) | FLEXSPI_MCR0_RXCLKSRC(1) | FLEXSPI_MCR0_MDIS; FLEXSPI2_MCR1 = FLEXSPI_MCR1_SEQWAIT(0xFFFF) | FLEXSPI_MCR1_AHBBUSWAIT(0xFFFF); FLEXSPI2_MCR2 = (FLEXSPI_MCR2 & ~(FLEXSPI_MCR2_RESUMEWAIT_MASK | FLEXSPI_MCR2_SCKBDIFFOPT | FLEXSPI_MCR2_SAMEDEVICEEN | FLEXSPI_MCR2_CLRLEARNPHASE | FLEXSPI_MCR2_CLRAHBBUFOPT)) | FLEXSPI_MCR2_RESUMEWAIT(0x20) /*| FLEXSPI_MCR2_SAMEDEVICEEN*/; FLEXSPI2_AHBCR = FLEXSPI2_AHBCR & ~(FLEXSPI_AHBCR_READADDROPT | FLEXSPI_AHBCR_PREFETCHEN | FLEXSPI_AHBCR_BUFFERABLEEN | FLEXSPI_AHBCR_CACHABLEEN); uint32_t mask = (FLEXSPI_AHBRXBUFCR0_PREFETCHEN | FLEXSPI_AHBRXBUFCR0_PRIORITY_MASK | FLEXSPI_AHBRXBUFCR0_MSTRID_MASK | FLEXSPI_AHBRXBUFCR0_BUFSZ_MASK); FLEXSPI2_AHBRXBUF0CR0 = (FLEXSPI2_AHBRXBUF0CR0 & ~mask) | FLEXSPI_AHBRXBUFCR0_PREFETCHEN | FLEXSPI_AHBRXBUFCR0_BUFSZ(64); FLEXSPI2_AHBRXBUF1CR0 = (FLEXSPI2_AHBRXBUF0CR0 & ~mask) | FLEXSPI_AHBRXBUFCR0_PREFETCHEN | FLEXSPI_AHBRXBUFCR0_BUFSZ(64); FLEXSPI2_AHBRXBUF2CR0 = mask; FLEXSPI2_AHBRXBUF3CR0 = mask; // RX watermark = one 64 bit line FLEXSPI2_IPRXFCR = (FLEXSPI_IPRXFCR & 0xFFFFFFC0) | FLEXSPI_IPRXFCR_CLRIPRXF; // TX watermark = one 64 bit line FLEXSPI2_IPTXFCR = (FLEXSPI_IPTXFCR & 0xFFFFFFC0) | FLEXSPI_IPTXFCR_CLRIPTXF; FLEXSPI2_INTEN = 0; FLEXSPI2_FLSHA1CR0 = 0x2000; // 8 MByte FLEXSPI2_FLSHA1CR1 = FLEXSPI_FLSHCR1_CSINTERVAL(2) | FLEXSPI_FLSHCR1_TCSH(3) | FLEXSPI_FLSHCR1_TCSS(3); FLEXSPI2_FLSHA1CR2 = FLEXSPI_FLSHCR2_AWRSEQID(6) | FLEXSPI_FLSHCR2_AWRSEQNUM(0) | FLEXSPI_FLSHCR2_ARDSEQID(5) | FLEXSPI_FLSHCR2_ARDSEQNUM(0); FLEXSPI2_FLSHA2CR0 = 0x2000; // 8 MByte FLEXSPI2_FLSHA2CR1 = FLEXSPI_FLSHCR1_CSINTERVAL(2) | FLEXSPI_FLSHCR1_TCSH(3) | FLEXSPI_FLSHCR1_TCSS(3); FLEXSPI2_FLSHA2CR2 = FLEXSPI_FLSHCR2_AWRSEQID(6) | FLEXSPI_FLSHCR2_AWRSEQNUM(0) | FLEXSPI_FLSHCR2_ARDSEQID(5) | FLEXSPI_FLSHCR2_ARDSEQNUM(0); FLEXSPI2_MCR0 &= ~FLEXSPI_MCR0_MDIS; FLEXSPI2_LUTKEY = FLEXSPI_LUTKEY_VALUE; FLEXSPI2_LUTCR = FLEXSPI_LUTCR_UNLOCK; volatile uint32_t *luttable = &FLEXSPI2_LUT0; for (int i=0; i < 64; i++) luttable[i] = 0; FLEXSPI2_MCR0 |= FLEXSPI_MCR0_SWRESET; while (FLEXSPI2_MCR0 & FLEXSPI_MCR0_SWRESET) ; // wait FLEXSPI2_LUTKEY = FLEXSPI_LUTKEY_VALUE; FLEXSPI2_LUTCR = FLEXSPI_LUTCR_UNLOCK; // cmd index 0 = exit QPI mode FLEXSPI2_LUT0 = LUT0(CMD_SDR, PINS4, 0xF5); // cmd index 1 = reset enable FLEXSPI2_LUT4 = LUT0(CMD_SDR, PINS1, 0x66); // cmd index 2 = reset FLEXSPI2_LUT8 = LUT0(CMD_SDR, PINS1, 0x99); // cmd index 3 = read ID bytes FLEXSPI2_LUT12 = LUT0(CMD_SDR, PINS1, 0x9F) | LUT1(DUMMY_SDR, PINS1, 24); FLEXSPI2_LUT13 = LUT0(READ_SDR, PINS1, 1); // cmd index 4 = enter QPI mode FLEXSPI2_LUT16 = LUT0(CMD_SDR, PINS1, 0x35); // cmd index 5 = read QPI FLEXSPI2_LUT20 = LUT0(CMD_SDR, PINS4, 0xEB) | LUT1(ADDR_SDR, PINS4, 24); FLEXSPI2_LUT21 = LUT0(DUMMY_SDR, PINS4, 6) | LUT1(READ_SDR, PINS4, 1); // cmd index 6 = write QPI FLEXSPI2_LUT24 = LUT0(CMD_SDR, PINS4, 0x38) | LUT1(ADDR_SDR, PINS4, 24); FLEXSPI2_LUT25 = LUT0(WRITE_SDR, PINS4, 1); // look for the first PSRAM chip flexspi2_command(0, 0); // exit quad mode flexspi2_command(1, 0); // reset enable flexspi2_command(2, 0); // reset (is this really necessary?) if (flexspi2_psram_id(0) == 0x5D0D) { // first PSRAM chip is present, look for a second PSRAM chip flexspi2_command(4, 0); flexspi2_command(0, 0x800000); // exit quad mode flexspi2_command(1, 0x800000); // reset enable flexspi2_command(2, 0x800000); // reset (is this really necessary?) if (flexspi2_psram_id(0x800000) == 0x5D0D) { flexspi2_command(4, 0x800000); // Two PSRAM chips are present, 16 MByte external_psram_size = 16; } else { // One PSRAM chip is present, 8 MByte external_psram_size = 8; } // TODO: zero uninitialized EXTMEM variables // TODO: copy from flash to initialize EXTMEM variables // TODO: set up for malloc_extmem() } else { // No PSRAM } } #endif // ARDUINO_TEENSY41 FLASHMEM void usb_pll_start() { while (1) { uint32_t n = CCM_ANALOG_PLL_USB1; // pg 759 printf("CCM_ANALOG_PLL_USB1=%08lX\n", n); if (n & CCM_ANALOG_PLL_USB1_DIV_SELECT) { printf(" ERROR, 528 MHz mode!\n"); // never supposed to use this mode! CCM_ANALOG_PLL_USB1_CLR = 0xC000; // bypass 24 MHz CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_BYPASS; // bypass CCM_ANALOG_PLL_USB1_CLR = CCM_ANALOG_PLL_USB1_POWER | // power down CCM_ANALOG_PLL_USB1_DIV_SELECT | // use 480 MHz CCM_ANALOG_PLL_USB1_ENABLE | // disable CCM_ANALOG_PLL_USB1_EN_USB_CLKS; // disable usb continue; } if (!(n & CCM_ANALOG_PLL_USB1_ENABLE)) { printf(" enable PLL\n"); // TODO: should this be done so early, or later?? CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_ENABLE; continue; } if (!(n & CCM_ANALOG_PLL_USB1_POWER)) { printf(" power up PLL\n"); CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_POWER; continue; } if (!(n & CCM_ANALOG_PLL_USB1_LOCK)) { printf(" wait for lock\n"); continue; } if (n & CCM_ANALOG_PLL_USB1_BYPASS) { printf(" turn off bypass\n"); CCM_ANALOG_PLL_USB1_CLR = CCM_ANALOG_PLL_USB1_BYPASS; continue; } if (!(n & CCM_ANALOG_PLL_USB1_EN_USB_CLKS)) { printf(" enable USB clocks\n"); CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_EN_USB_CLKS; continue; } return; // everything is as it should be :-) } } FLASHMEM void reset_PFD() { //Reset PLL2 PFDs, set default frequencies: CCM_ANALOG_PFD_528_SET = (1 << 31) | (1 << 23) | (1 << 15) | (1 << 7); CCM_ANALOG_PFD_528 = 0x2018101B; // PFD0:352, PFD1:594, PFD2:396, PFD3:297 MHz //PLL3: CCM_ANALOG_PFD_480_SET = (1 << 31) | (1 << 23) | (1 << 15) | (1 << 7); CCM_ANALOG_PFD_480 = 0x13110D0C; // PFD0:720, PFD1:664, PFD2:508, PFD3:454 MHz } // Stack frame // xPSR // ReturnAddress // LR (R14) - typically FFFFFFF9 for IRQ or Exception // R12 // R3 // R2 // R1 // R0 // Code from :: https://community.nxp.com/thread/389002 __attribute__((naked)) void unused_interrupt_vector(void) { __asm( ".syntax unified\n" "MOVS R0, #4 \n" "MOV R1, LR \n" "TST R0, R1 \n" "BEQ _MSP \n" "MRS R0, PSP \n" "B HardFault_HandlerC \n" "_MSP: \n" "MRS R0, MSP \n" "B HardFault_HandlerC \n" ".syntax divided\n") ; } __attribute__((weak)) void HardFault_HandlerC(unsigned int *hardfault_args) { volatile unsigned int nn ; #ifdef PRINT_DEBUG_STUFF volatile unsigned int stacked_r0 ; volatile unsigned int stacked_r1 ; volatile unsigned int stacked_r2 ; volatile unsigned int stacked_r3 ; volatile unsigned int stacked_r12 ; volatile unsigned int stacked_lr ; volatile unsigned int stacked_pc ; volatile unsigned int stacked_psr ; volatile unsigned int _CFSR ; volatile unsigned int _HFSR ; volatile unsigned int _DFSR ; volatile unsigned int _AFSR ; volatile unsigned int _BFAR ; volatile unsigned int _MMAR ; volatile unsigned int addr ; stacked_r0 = ((unsigned int)hardfault_args[0]) ; stacked_r1 = ((unsigned int)hardfault_args[1]) ; stacked_r2 = ((unsigned int)hardfault_args[2]) ; stacked_r3 = ((unsigned int)hardfault_args[3]) ; stacked_r12 = ((unsigned int)hardfault_args[4]) ; stacked_lr = ((unsigned int)hardfault_args[5]) ; stacked_pc = ((unsigned int)hardfault_args[6]) ; stacked_psr = ((unsigned int)hardfault_args[7]) ; // Configurable Fault Status Register // Consists of MMSR, BFSR and UFSR //(n & ( 1 << k )) >> k _CFSR = (*((volatile unsigned int *)(0xE000ED28))) ; // Hard Fault Status Register _HFSR = (*((volatile unsigned int *)(0xE000ED2C))) ; // Debug Fault Status Register _DFSR = (*((volatile unsigned int *)(0xE000ED30))) ; // Auxiliary Fault Status Register _AFSR = (*((volatile unsigned int *)(0xE000ED3C))) ; // Read the Fault Address Registers. These may not contain valid values. // Check BFARVALID/MMARVALID to see if they are valid values // MemManage Fault Address Register _MMAR = (*((volatile unsigned int *)(0xE000ED34))) ; // Bus Fault Address Register _BFAR = (*((volatile unsigned int *)(0xE000ED38))) ; //__asm("BKPT #0\n") ; // Break into the debugger // NO Debugger here. asm volatile("mrs %0, ipsr\n" : "=r" (addr)::); printf("\nFault irq %d\n", addr & 0x1FF); printf(" stacked_r0 :: %x\n", stacked_r0); printf(" stacked_r1 :: %x\n", stacked_r1); printf(" stacked_r2 :: %x\n", stacked_r2); printf(" stacked_r3 :: %x\n", stacked_r3); printf(" stacked_r12 :: %x\n", stacked_r12); printf(" stacked_lr :: %x\n", stacked_lr); printf(" stacked_pc :: %x\n", stacked_pc); printf(" stacked_psr :: %x\n", stacked_psr); printf(" _CFSR :: %x\n", _CFSR); if(_CFSR > 0){ //Memory Management Faults if((_CFSR & 1) == 1){ printf(" (IACCVIOL) Instruction Access Violation\n"); } else if(((_CFSR & (0x02))>>1) == 1){ printf(" (DACCVIOL) Data Access Violation\n"); } else if(((_CFSR & (0x08))>>3) == 1){ printf(" (MUNSTKERR) MemMange Fault on Unstacking\n"); } else if(((_CFSR & (0x10))>>4) == 1){ printf(" (MSTKERR) MemMange Fault on stacking\n"); } else if(((_CFSR & (0x20))>>5) == 1){ printf(" (MLSPERR) MemMange Fault on FP Lazy State\n"); } if(((_CFSR & (0x80))>>7) == 1){ printf(" (MMARVALID) MemMange Fault Address Valid\n"); } //Bus Fault Status Register if(((_CFSR & 0x100)>>8) == 1){ printf(" (IBUSERR) Instruction Bus Error\n"); } else if(((_CFSR & (0x200))>>9) == 1){ printf(" (PRECISERR) Data bus error(address in BFAR)\n"); } else if(((_CFSR & (0x400))>>10) == 1){ printf(" (IMPRECISERR) Data bus error but address not related to instruction\n"); } else if(((_CFSR & (0x800))>>11) == 1){ printf(" (UNSTKERR) Bus Fault on unstacking for a return from exception \n"); } else if(((_CFSR & (0x1000))>>12) == 1){ printf(" (STKERR) Bus Fault on stacking for exception entry\n"); } else if(((_CFSR & (0x2000))>>13) == 1){ printf(" (LSPERR) Bus Fault on FP lazy state preservation\n"); } if(((_CFSR & (0x8000))>>15) == 1){ printf(" (BFARVALID) Bus Fault Address Valid\n"); } //Usuage Fault Status Register if(((_CFSR & 0x10000)>>16) == 1){ printf(" (UNDEFINSTR) Undefined instruction\n"); } else if(((_CFSR & (0x20000))>>17) == 1){ printf(" (INVSTATE) Instruction makes illegal use of EPSR)\n"); } else if(((_CFSR & (0x40000))>>18) == 1){ printf(" (INVPC) Usage fault: invalid EXC_RETURN\n"); } else if(((_CFSR & (0x80000))>>19) == 1){ printf(" (NOCP) No Coprocessor \n"); } else if(((_CFSR & (0x1000000))>>24) == 1){ printf(" (UNALIGNED) Unaligned access UsageFault\n"); } else if(((_CFSR & (0x2000000))>>25) == 1){ printf(" (DIVBYZERO) Divide by zero\n"); } } printf(" _HFSR :: %x\n", _HFSR); if(_HFSR > 0){ //Memory Management Faults if(((_HFSR & (0x02))>>1) == 1){ printf(" (VECTTBL) Bus Fault on Vec Table Read\n"); } else if(((_HFSR & (0x40000000))>>30) == 1){ printf(" (FORCED) Forced Hard Fault\n"); } else if(((_HFSR & (0x80000000))>>31) == 31){ printf(" (DEBUGEVT) Reserved for Debug\n"); } } printf(" _DFSR :: %x\n", _DFSR); printf(" _AFSR :: %x\n", _AFSR); printf(" _BFAR :: %x\n", _BFAR); printf(" _MMAR :: %x\n", _MMAR); #endif IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_03 = 5; // pin 13 IOMUXC_SW_PAD_CTL_PAD_GPIO_B0_03 = IOMUXC_PAD_DSE(7); GPIO2_GDIR |= (1 << 3); GPIO2_DR_SET = (1 << 3); GPIO2_DR_CLEAR = (1 << 3); //digitalWrite(13, LOW); if ( F_CPU_ACTUAL >= 600000000 ) set_arm_clock(300000000); while (1) { GPIO2_DR_SET = (1 << 3); //digitalWrite(13, HIGH); // digitalWrite(13, HIGH); for (nn = 0; nn < 2000000/2; nn++) ; GPIO2_DR_CLEAR = (1 << 3); //digitalWrite(13, LOW); // digitalWrite(13, LOW); for (nn = 0; nn < 18000000/2; nn++) ; } } __attribute__((weak)) void userDebugDump(){ volatile unsigned int nn; printf("\nuserDebugDump() in startup.c ___ \n"); while (1) { GPIO2_DR_SET = (1 << 3); //digitalWrite(13, HIGH); // digitalWrite(13, HIGH); for (nn = 0; nn < 2000000; nn++) ; GPIO2_DR_CLEAR = (1 << 3); //digitalWrite(13, LOW); // digitalWrite(13, LOW); for (nn = 0; nn < 18000000; nn++) ; GPIO2_DR_SET = (1 << 3); //digitalWrite(13, HIGH); // digitalWrite(13, HIGH); for (nn = 0; nn < 20000000; nn++) ; GPIO2_DR_CLEAR = (1 << 3); //digitalWrite(13, LOW); // digitalWrite(13, LOW); for (nn = 0; nn < 10000000; nn++) ; } } __attribute__((weak)) void PJRCunused_interrupt_vector(void) { // TODO: polling Serial to complete buffered transmits #ifdef PRINT_DEBUG_STUFF uint32_t addr; asm volatile("mrs %0, ipsr\n" : "=r" (addr)::); printf("\nirq %d\n", addr & 0x1FF); asm("ldr %0, [sp, #52]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #48]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #44]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #40]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #36]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #33]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #34]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #28]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #24]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #20]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #16]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #12]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #8]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #4]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #0]" : "=r" (addr) ::); printf(" %x\n", addr); #endif #if 1 if ( F_CPU_ACTUAL >= 600000000 ) set_arm_clock(100000000); IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_03 = 5; // pin 13 IOMUXC_SW_PAD_CTL_PAD_GPIO_B0_03 = IOMUXC_PAD_DSE(7); GPIO2_GDIR |= (1<<3); GPIO2_DR_SET = (1<<3); while (1) { volatile uint32_t n; GPIO2_DR_SET = (1<<3); //digitalWrite(13, HIGH); for (n=0; n < 2000000/6; n++) ; GPIO2_DR_CLEAR = (1<<3); //digitalWrite(13, LOW); for (n=0; n < 1500000/6; n++) ; } #else if ( F_CPU_ACTUAL >= 600000000 ) set_arm_clock(100000000); while (1) asm ("WFI"); #endif } __attribute__((section(".startup"), optimize("no-tree-loop-distribute-patterns"))) static void memory_copy(uint32_t *dest, const uint32_t *src, uint32_t *dest_end) { if (dest == src) return; while (dest < dest_end) { *dest++ = *src++; } } __attribute__((section(".startup"), optimize("no-tree-loop-distribute-patterns"))) static void memory_clear(uint32_t *dest, uint32_t *dest_end) { while (dest < dest_end) { *dest++ = 0; } } // syscall functions need to be in the same C file as the entry point "ResetVector" // otherwise the linker will discard them in some cases. #include // from the linker script extern unsigned long _heap_start; extern unsigned long _heap_end; char *__brkval = (char *)&_heap_start; void * _sbrk(int incr) { char *prev = __brkval; if (incr != 0) { if (prev + incr > (char *)&_heap_end) { errno = ENOMEM; return (void *)-1; } __brkval = prev + incr; } return prev; } __attribute__((weak)) int _read(int file, char *ptr, int len) { return 0; } __attribute__((weak)) int _close(int fd) { return -1; } #include __attribute__((weak)) int _fstat(int fd, struct stat *st) { st->st_mode = S_IFCHR; return 0; } __attribute__((weak)) int _isatty(int fd) { return 1; } __attribute__((weak)) int _lseek(int fd, long long offset, int whence) { return -1; } __attribute__((weak)) void _exit(int status) { while (1) asm ("WFI"); } __attribute__((weak)) void __cxa_pure_virtual() { while (1) asm ("WFI"); } __attribute__((weak)) int __cxa_guard_acquire (char *g) { return !(*g); } __attribute__((weak)) void __cxa_guard_release(char *g) { *g = 1; } __attribute__((weak)) void abort(void) { while (1) asm ("WFI"); }