/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "kinetis.h" #include "core_pins.h" #include "HardwareSerial.h" #ifdef HAS_KINETISK_LPUART0 #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000) #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit))) #define BITBAND_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1) #define BITBAND_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0) #define TCIE_BIT 22 #define TIE_BIT 23 //////////////////////////////////////////////////////////////// // Tunable parameters (relatively safe to edit these numbers) //////////////////////////////////////////////////////////////// #ifndef SERIAL6_TX_BUFFER_SIZE #define SERIAL6_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer #endif #ifndef SERIAL6_RX_BUFFER_SIZE #define SERIAL6_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer #endif #define RTS_HIGH_WATERMARK (SERIAL6_RX_BUFFER_SIZE-24) // RTS requests sender to pause #define RTS_LOW_WATERMARK (SERIAL6_RX_BUFFER_SIZE-38) // RTS allows sender to resume #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest //////////////////////////////////////////////////////////////// // changes not recommended below this point.... //////////////////////////////////////////////////////////////// #ifdef SERIAL_9BIT_SUPPORT static uint8_t use9Bits = 0; #define BUFTYPE uint16_t #else #define BUFTYPE uint8_t #define use9Bits 0 #endif static volatile BUFTYPE tx_buffer[SERIAL6_TX_BUFFER_SIZE]; static volatile BUFTYPE rx_buffer[SERIAL6_RX_BUFFER_SIZE]; static volatile uint8_t transmitting = 0; static volatile uint8_t *transmit_pin=NULL; #define transmit_assert() *transmit_pin = 1 #define transmit_deassert() *transmit_pin = 0 static volatile uint8_t *rts_pin=NULL; #define rts_assert() *rts_pin = 0 #define rts_deassert() *rts_pin = 1 #if SERIAL6_TX_BUFFER_SIZE > 255 static volatile uint16_t tx_buffer_head = 0; static volatile uint16_t tx_buffer_tail = 0; #else static volatile uint8_t tx_buffer_head = 0; static volatile uint8_t tx_buffer_tail = 0; #endif #if SERIAL6_RX_BUFFER_SIZE > 255 static volatile uint16_t rx_buffer_head = 0; static volatile uint16_t rx_buffer_tail = 0; #else static volatile uint8_t rx_buffer_head = 0; static volatile uint8_t rx_buffer_tail = 0; #endif static uint8_t tx_pin_num = 48; // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer void serial6_begin(uint32_t desiredBaudRate) { #define F_LPUART_CLOCK_SPEED 48000000 //F_BUS // Make sure the clock for this uart is enabled, else the registers are not // vailable. SIM_SCGC2 |= SIM_SCGC2_LPUART0; // Turn on the clock // Convert the baud rate to best divisor and OSR, based off of code I found in posting // try to find an OSR > 4 with the minimum difference from the actual disired baud rate. uint16_t sbr, sbrTemp, osrCheck; uint32_t osr, baudDiffCheck, calculatedBaud, baudDiff; uint32_t clockSpeed; // First lets figure out what the LPUART Clock speed is. uint32_t PLLFLLSEL = SIM_SOPT2 & SIM_SOPT2_IRC48SEL; // Note: Bot bits on here if (PLLFLLSEL == SIM_SOPT2_IRC48SEL) clockSpeed = 48000000; // Fixed to 48mhz else if (PLLFLLSEL == SIM_SOPT2_PLLFLLSEL) clockSpeed = F_PLL; // Using PLL clock else clockSpeed = F_CPU/4; // FLL clock, guessing osr = 4; sbr = (clockSpeed/(desiredBaudRate * osr)); /*set sbr to 1 if the clockSpeed can not satisfy the desired baud rate*/ if(sbr == 0) { // Maybe print something. return; // can not initialize } // With integer math the divide*muliply implies the calculated baud will be >= desired baud calculatedBaud = (clockSpeed / (osr * sbr)); baudDiff = calculatedBaud - desiredBaudRate; // Check if better off with sbr+1 if (baudDiff != 0) { calculatedBaud = (clockSpeed / (osr * (sbr + 1))); baudDiffCheck = desiredBaudRate - calculatedBaud ; if (baudDiffCheck < baudDiff) { sbr++; // use the higher sbr baudDiff = baudDiffCheck; } } // loop to find the best osr value possible, one that generates minimum baudDiff for (osrCheck = 5; osrCheck <= 32; osrCheck++) { sbrTemp = (clockSpeed/(desiredBaudRate * osrCheck)); if(sbrTemp == 0) break; // higher divisor returns 0 so can not use... // Remember integer math so (X/Y)*Y will always be <=X calculatedBaud = (clockSpeed / (osrCheck * sbrTemp)); baudDiffCheck = calculatedBaud - desiredBaudRate; if (baudDiffCheck <= baudDiff) { baudDiff = baudDiffCheck; osr = osrCheck; sbr = sbrTemp; } // Lets try the rounded up one as well if (baudDiffCheck) { calculatedBaud = (clockSpeed / (osrCheck * ++sbrTemp)); baudDiffCheck = desiredBaudRate - calculatedBaud; if (baudDiffCheck <= baudDiff) { baudDiff = baudDiffCheck; osr = osrCheck; sbr = sbrTemp; } } } // for lower OSR <= 7x turn on both edge sampling uint32_t lpb = LPUART_BAUD_OSR(osr-1) | LPUART_BAUD_SBR(sbr); if (osr < 8) { lpb |= LPUART_BAUD_BOTHEDGE; } LPUART0_BAUD = lpb; SIM_SOPT2 |= SIM_SOPT2_LPUARTSRC(1); // Lets use PLL? rx_buffer_head = 0; rx_buffer_tail = 0; tx_buffer_head = 0; tx_buffer_tail = 0; transmitting = 0; CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(5); CORE_PIN48_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(5); LPUART0_CTRL = 0; LPUART0_MATCH = 0; LPUART0_STAT = 0; // Enable the transmitter, receiver and enable receiver interrupt LPUART0_CTRL |= LPUART_CTRL_RIE | LPUART_CTRL_TE | LPUART_CTRL_RE; NVIC_SET_PRIORITY(IRQ_LPUART0, IRQ_PRIORITY); NVIC_ENABLE_IRQ(IRQ_LPUART0); } void serial6_format(uint32_t format) { uint32_t c; // Bits 0-2 - Parity plus 9 bit. c = LPUART0_CTRL; //c = (c & ~(LPUART_CTRL_M | LPUART_CTRL_PE | LPUART_CTRL_PT)) | (format & (LPUART_CTRL_PE | LPUART_CTRL_PT)); // configure parity //if (format & 0x04) c |= LPUART_CTRL_M; // 9 bits (might include parity) c = (c & ~0x13) | (format & 0x03); // configure parity if (format & 0x04) c |= 0x10; // 9 bits (might include parity) LPUART0_CTRL = c; if ((format & 0x0F) == 0x04) LPUART0_CTRL |= LPUART_CTRL_T8; // 8N2 is 9 bit with 9th bit always 1 // Bit 3 10 bit - Will assume that begin already cleared it. if (format & 0x08) LPUART0_BAUD |= LPUART_BAUD_M10; // Bit 4 RXINVERT c = LPUART0_STAT & ~LPUART_STAT_RXINV; if (format & 0x10) c |= LPUART_STAT_RXINV; // rx invert LPUART0_STAT = c; // Bit 5 TXINVERT c = LPUART0_CTRL & ~LPUART_CTRL_TXINV; if (format & 0x20) c |= LPUART_CTRL_TXINV; // tx invert LPUART0_CTRL = c; // For T3.6 See about turning on 2 stop bit mode if ( format & 0x100) LPUART0_BAUD |= LPUART_BAUD_SBNS; } void serial6_end(void) { if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return; while (transmitting) yield(); // wait for buffered data to send NVIC_DISABLE_IRQ(IRQ_LPUART0); LPUART0_CTRL = 0; CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); CORE_PIN48_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); rx_buffer_head = 0; rx_buffer_tail = 0; if (rts_pin) rts_deassert(); } void serial6_set_transmit_pin(uint8_t pin) { while (transmitting) ; pinMode(pin, OUTPUT); digitalWrite(pin, LOW); transmit_pin = portOutputRegister(pin); } void serial6_set_tx(uint8_t pin, uint8_t opendrain) { uint32_t cfg; if (opendrain) pin |= 128; if (pin == tx_pin_num) return; if ((SIM_SCGC2 & SIM_SCGC2_LPUART0)) { switch (tx_pin_num & 127) { case 48: CORE_PIN48_CONFIG = 0; break; // PTE24 } if (opendrain) { cfg = PORT_PCR_DSE | PORT_PCR_ODE; } else { cfg = PORT_PCR_DSE | PORT_PCR_SRE; } switch (pin & 127) { case 48: CORE_PIN48_CONFIG = cfg | PORT_PCR_MUX(5); break; } } tx_pin_num = pin; } void serial6_set_rx(uint8_t pin) { } int serial6_set_rts(uint8_t pin) { if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return 0; if (pin < CORE_NUM_DIGITAL) { rts_pin = portOutputRegister(pin); pinMode(pin, OUTPUT); rts_assert(); } else { rts_pin = NULL; return 0; } return 1; } int serial6_set_cts(uint8_t pin) { if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return 0; if (pin == 56) { CORE_PIN56_CONFIG = PORT_PCR_MUX(5) | PORT_PCR_PE; // weak pulldown } else { UART5_MODEM &= ~UART_MODEM_TXCTSE; return 0; } UART5_MODEM |= UART_MODEM_TXCTSE; return 1; } void serial6_putchar(uint32_t c) { uint32_t head, n; if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return; if (transmit_pin) transmit_assert(); head = tx_buffer_head; if (++head >= SERIAL6_TX_BUFFER_SIZE) head = 0; while (tx_buffer_tail == head) { int priority = nvic_execution_priority(); if (priority <= IRQ_PRIORITY) { if ((LPUART0_STAT & LPUART_STAT_TDRE)) { uint32_t tail = tx_buffer_tail; if (++tail >= SERIAL6_TX_BUFFER_SIZE) tail = 0; n = tx_buffer[tail]; //if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); LPUART0_DATA = n; tx_buffer_tail = tail; } } else if (priority >= 256) { yield(); // wait } } tx_buffer[head] = c; transmitting = 1; tx_buffer_head = head; //LPUART0_CTRL |= LPUART_CTRL_TIE; // enable the transmit interrupt BITBAND_SET_BIT(LPUART0_CTRL, TIE_BIT); } void serial6_write(const void *buf, unsigned int count) { const uint8_t *p = (const uint8_t *)buf; while (count-- > 0) serial6_putchar(*p++); } void serial6_flush(void) { while (transmitting) yield(); // wait } int serial6_write_buffer_free(void) { uint32_t head, tail; head = tx_buffer_head; tail = tx_buffer_tail; if (head >= tail) return SERIAL6_TX_BUFFER_SIZE - 1 - head + tail; return tail - head - 1; } int serial6_available(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head >= tail) return head - tail; return SERIAL6_RX_BUFFER_SIZE + head - tail; } int serial6_getchar(void) { uint32_t head, tail; int c; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= SERIAL6_RX_BUFFER_SIZE) tail = 0; c = rx_buffer[tail]; rx_buffer_tail = tail; if (rts_pin) { int avail; if (head >= tail) avail = head - tail; else avail = SERIAL6_RX_BUFFER_SIZE + head - tail; if (avail <= RTS_LOW_WATERMARK) rts_assert(); } return c; } int serial6_peek(void) { uint32_t head, tail; head = rx_buffer_head; tail = rx_buffer_tail; if (head == tail) return -1; if (++tail >= SERIAL6_RX_BUFFER_SIZE) tail = 0; return rx_buffer[tail]; } void serial6_clear(void) { rx_buffer_head = rx_buffer_tail; if (rts_pin) rts_assert(); } // status interrupt combines // Transmit data below watermark LPUART_STAT_TDRE // Transmit complete LPUART_STAT_TC // Idle line LPUART_STAT_IDLE // Receive data above watermark LPUART_STAT_RDRF // LIN break detect UART_S2_LBKDIF // RxD pin active edge UART_S2_RXEDGIF void lpuart0_status_isr(void) { uint32_t head, tail, n; uint32_t c; if (LPUART0_STAT & LPUART_STAT_RDRF) { // if (use9Bits && (UART5_C3 & 0x80)) { // n = UART5_D | 0x100; // } else { // n = UART5_D; // } n = LPUART0_DATA & 0x3ff; // use only the 10 data bits head = rx_buffer_head + 1; if (head >= SERIAL6_RX_BUFFER_SIZE) head = 0; if (head != rx_buffer_tail) { rx_buffer[head] = n; rx_buffer_head = head; } if (rts_pin) { int avail; tail = tx_buffer_tail; if (head >= tail) avail = head - tail; else avail = SERIAL6_RX_BUFFER_SIZE + head - tail; if (avail >= RTS_HIGH_WATERMARK) rts_deassert(); } } c = LPUART0_CTRL; if ((c & LPUART_CTRL_TIE) && (LPUART0_STAT & LPUART_STAT_TDRE)) { head = tx_buffer_head; tail = tx_buffer_tail; if (head == tail) { BITBAND_CLR_BIT(LPUART0_CTRL, TIE_BIT); BITBAND_SET_BIT(LPUART0_CTRL, TCIE_BIT); //LPUART0_CTRL &= ~LPUART_CTRL_TIE; //LPUART0_CTRL |= LPUART_CTRL_TCIE; // Actually wondering if we can just leave this one on... } else { if (++tail >= SERIAL6_TX_BUFFER_SIZE) tail = 0; n = tx_buffer[tail]; //if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); LPUART0_DATA = n; tx_buffer_tail = tail; } } if ((c & LPUART_CTRL_TCIE) && (LPUART0_STAT & LPUART_STAT_TC)) { transmitting = 0; if (transmit_pin) transmit_deassert(); BITBAND_CLR_BIT(LPUART0_CTRL, TCIE_BIT); // LPUART0_CTRL &= ~LPUART_CTRL_TCIE; // Actually wondering if we can just leave this one on... } } #endif // HAS_KINETISK_UART4