#include "imxrt.h" #include "core_pins.h" #include "debug/printf.h" static uint8_t calibrating; static uint8_t analog_config_bits = 10; static uint8_t analog_num_average = 4; const uint8_t pin_to_channel[] = { // pg 482 7, // 0/A0 AD_B1_02 8, // 1/A1 AD_B1_03 12, // 2/A2 AD_B1_07 11, // 3/A3 AD_B1_06 6, // 4/A4 AD_B1_01 5, // 5/A5 AD_B1_00 15, // 6/A6 AD_B1_10 0, // 7/A7 AD_B1_11 13, // 8/A8 AD_B1_08 14, // 9/A9 AD_B1_09 128, // 10 128, // 11 128, // 12 128, // 13 7, // 14/A0 AD_B1_02 8, // 15/A1 AD_B1_03 12, // 16/A2 AD_B1_07 11, // 17/A3 AD_B1_06 6, // 18/A4 AD_B1_01 5, // 19/A5 AD_B1_00 15, // 20/A6 AD_B1_10 0, // 21/A7 AD_B1_11 13, // 22/A8 AD_B1_08 14, // 23/A9 AD_B1_09 1, // 24/A10 AD_B0_12 2 // 25/A11 AD_B0_13 // 26/A12 AD_B1_14 - only on ADC2 // 27/A13 AD_B1_15 - only on ADC2 }; static void wait_for_cal(void) { printf("wait_for_cal\n"); while (ADC1_GC & ADC_GC_CAL) ; // TODO: check CALF, but what do to about CAL failure? calibrating = 0; printf("cal complete\n"); } int analogRead(uint8_t pin) { if (pin > sizeof(pin_to_channel)) return 0; if (calibrating) wait_for_cal(); uint8_t ch = pin_to_channel[pin]; if (ch > 15) return 0; ADC1_HC0 = ch; while (!(ADC1_HS & ADC_HS_COCO0)) ; // wait return ADC1_R0; } void analogReference(uint8_t type) { } void analogReadRes(unsigned int bits) { } void analogReadAveraging(unsigned int num) { uint32_t tmp32, mode, avg=0; //disable averaging tmp32 = ADC1_GC; ADC1_GC &= ~0x20; mode = ADC1_CFG & ~0xC000; if (num >= 32) { mode |= ADC_CFG_AVGS(3); //Serial.println(ADC_CFG_AVGS(3), BIN); } else if (num >= 16) { mode |= ADC_CFG_AVGS(2); } else if (num >= 8) { mode |= ADC_CFG_AVGS(1); } else { mode |= ADC_CFG_AVGS(0); } ADC1_CFG = mode; //enable averaging ADC1_GC = tmp32; } #define MAX_ADC_CLOCK 20000000 void analog_init(void) { uint32_t mode, avg=0; printf("analogInit\n"); CCM_CCGR1 |= CCM_CCGR1_ADC1(CCM_CCGR_ON); if (analog_config_bits == 8) { // 8 bit conversion (17 clocks) plus 8 clocks for input settling mode = ADC_CFG_MODE(0) | ADC_CFG_ADSTS(3); } else if (analog_config_bits == 10) { // 10 bit conversion (17 clocks) plus 20 clocks for input settling mode = ADC_CFG_MODE(1) | ADC_CFG_ADSTS(2) | ADC_CFG_ADLSMP; } else { // 12 bit conversion (25 clocks) plus 24 clocks for input settling mode = ADC_CFG_MODE(2) | ADC_CFG_ADSTS(3) | ADC_CFG_ADLSMP; } if (analog_num_average >= 4) { if (analog_num_average >= 32) { mode |= ADC_CFG_AVGS(3); } else if (analog_num_average >= 16) { mode |= ADC_CFG_AVGS(2); } else if (analog_num_average >= 8) { mode |= ADC_CFG_AVGS(1); } avg = ADC_GC_AVGE; } #if 1 mode |= ADC_CFG_ADIV(1) | ADC_CFG_ADICLK(3); // async clock #else uint32_t clock = F_BUS; if (clock > MAX_ADC_CLOCK*8) { mode |= ADC_CFG_ADIV(3) | ADC_CFG_ADICLK(1); // use IPG/16 } else if (clock > MAX_ADC_CLOCK*4) { mode |= ADC_CFG_ADIV(2) | ADC_CFG_ADICLK(1); // use IPG/8 } else if (clock > MAX_ADC_CLOCK*2) { mode |= ADC_CFG_ADIV(1) | ADC_CFG_ADICLK(1); // use IPG/4 } else if (clock > MAX_ADC_CLOCK) { mode |= ADC_CFG_ADIV(0) | ADC_CFG_ADICLK(1); // use IPG/2 } else { mode |= ADC_CFG_ADIV(0) | ADC_CFG_ADICLK(0); // use IPG } #endif ADC1_CFG = mode | ADC_HC_AIEN | ADC_CFG_ADHSC; ADC1_GC = avg | ADC_GC_CAL; // begin cal calibrating = 1; }