/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "usb_dev.h" #ifdef AUDIO_INTERFACE // defined by usb_dev.h -> usb_desc.h #if F_CPU >= 20000000 // Uncomment this to work around a limitation in Macintosh adaptive rates // This is not a perfect solution. Details here: // https://forum.pjrc.com/threads/34855-Distorted-audio-when-using-USB-input-on-Teensy-3-1 //#define MACOSX_ADAPTIVE_LIMIT bool AudioInputUSB::update_responsibility; audio_block_t * AudioInputUSB::incoming_left; audio_block_t * AudioInputUSB::incoming_right; audio_block_t * AudioInputUSB::ready_left; audio_block_t * AudioInputUSB::ready_right; uint16_t AudioInputUSB::incoming_count; uint8_t AudioInputUSB::receive_flag; struct usb_audio_features_struct AudioInputUSB::features = {0,0,FEATURE_MAX_VOLUME/2}; #define DMABUFATTR __attribute__ ((section(".dmabuffers"), aligned (4))) uint16_t usb_audio_receive_buffer[AUDIO_RX_SIZE/2] DMABUFATTR; uint32_t usb_audio_sync_feedback DMABUFATTR; uint8_t usb_audio_receive_setting=0; static uint32_t feedback_accumulator = 185042824; void AudioInputUSB::begin(void) { incoming_count = 0; incoming_left = NULL; incoming_right = NULL; ready_left = NULL; ready_right = NULL; receive_flag = 0; // update_responsibility = update_setup(); // TODO: update responsibility is tough, partly because the USB // interrupts aren't sychronous to the audio library block size, // but also because the PC may stop transmitting data, which // means we no longer get receive callbacks from usb_dev. update_responsibility = false; usb_audio_sync_feedback = feedback_accumulator >> 8; } static void copy_to_buffers(const uint32_t *src, int16_t *left, int16_t *right, unsigned int len) { uint32_t *target = (uint32_t*) src + len; while ((src < target) && (((uintptr_t) left & 0x02) != 0)) { uint32_t n = *src++; *left++ = n & 0xFFFF; *right++ = n >> 16; } while ((src < target - 2)) { uint32_t n1 = *src++; uint32_t n = *src++; *(uint32_t *)left = (n1 & 0xFFFF) | ((n & 0xFFFF) << 16); left+=2; *(uint32_t *)right = (n1 >> 16) | ((n & 0xFFFF0000)) ; right+=2; } while ((src < target)) { uint32_t n = *src++; *left++ = n & 0xFFFF; *right++ = n >> 16; } } // Called from the USB interrupt when an isochronous packet arrives // we must completely remove it from the receive buffer before returning // void usb_audio_receive_callback(unsigned int len) { unsigned int count, avail; audio_block_t *left, *right; const uint32_t *data; AudioInputUSB::receive_flag = 1; len >>= 2; // 1 sample = 4 bytes: 2 left, 2 right data = (const uint32_t *)usb_audio_receive_buffer; count = AudioInputUSB::incoming_count; left = AudioInputUSB::incoming_left; right = AudioInputUSB::incoming_right; if (left == NULL) { left = AudioStream::allocate(); if (left == NULL) return; AudioInputUSB::incoming_left = left; } if (right == NULL) { right = AudioStream::allocate(); if (right == NULL) return; AudioInputUSB::incoming_right = right; } while (len > 0) { avail = AUDIO_BLOCK_SAMPLES - count; if (len < avail) { copy_to_buffers(data, left->data + count, right->data + count, len); AudioInputUSB::incoming_count = count + len; return; } else if (avail > 0) { copy_to_buffers(data, left->data + count, right->data + count, avail); data += avail; len -= avail; if (AudioInputUSB::ready_left || AudioInputUSB::ready_right) { // buffer overrun, PC sending too fast AudioInputUSB::incoming_count = count + avail; //if (len > 0) { //serial_print("!"); //serial_phex(len); //} return; } send: AudioInputUSB::ready_left = left; AudioInputUSB::ready_right = right; //if (AudioInputUSB::update_responsibility) AudioStream::update_all(); left = AudioStream::allocate(); if (left == NULL) { AudioInputUSB::incoming_left = NULL; AudioInputUSB::incoming_right = NULL; AudioInputUSB::incoming_count = 0; return; } right = AudioStream::allocate(); if (right == NULL) { AudioStream::release(left); AudioInputUSB::incoming_left = NULL; AudioInputUSB::incoming_right = NULL; AudioInputUSB::incoming_count = 0; return; } AudioInputUSB::incoming_left = left; AudioInputUSB::incoming_right = right; count = 0; } else { if (AudioInputUSB::ready_left || AudioInputUSB::ready_right) return; goto send; // recover from buffer overrun } } AudioInputUSB::incoming_count = count; } void AudioInputUSB::update(void) { audio_block_t *left, *right; __disable_irq(); left = ready_left; ready_left = NULL; right = ready_right; ready_right = NULL; uint16_t c = incoming_count; uint8_t f = receive_flag; receive_flag = 0; __enable_irq(); if (f) { int diff = AUDIO_BLOCK_SAMPLES/2 - (int)c; feedback_accumulator += diff / 3; uint32_t feedback = (feedback_accumulator >> 8) + diff * 100; #ifdef MACOSX_ADAPTIVE_LIMIT if (feedback > 722698) feedback = 722698; #endif usb_audio_sync_feedback = feedback; //if (diff > 0) { //serial_print("."); //} else if (diff < 0) { //serial_print("^"); //} } //serial_phex(c); //serial_print("."); if (!left || !right) { //serial_print("#"); // buffer underrun - PC sending too slow //if (f) feedback_accumulator += 10 << 8; } if (left) { transmit(left, 0); release(left); } if (right) { transmit(right, 1); release(right); } } bool AudioOutputUSB::update_responsibility; audio_block_t * AudioOutputUSB::left_1st; audio_block_t * AudioOutputUSB::left_2nd; audio_block_t * AudioOutputUSB::right_1st; audio_block_t * AudioOutputUSB::right_2nd; uint16_t AudioOutputUSB::offset_1st; uint16_t usb_audio_transmit_buffer[AUDIO_TX_SIZE/2] DMABUFATTR; uint8_t usb_audio_transmit_setting=0; void AudioOutputUSB::begin(void) { update_responsibility = false; left_1st = NULL; right_1st = NULL; } static void copy_from_buffers(uint32_t *dst, int16_t *left, int16_t *right, unsigned int len) { // TODO: optimize... while (len > 0) { *dst++ = (*right++ << 16) | (*left++ & 0xFFFF); len--; } } void AudioOutputUSB::update(void) { audio_block_t *left, *right; // TODO: we shouldn't be writing to these...... //left = receiveReadOnly(0); // input 0 = left channel //right = receiveReadOnly(1); // input 1 = right channel left = receiveWritable(0); // input 0 = left channel right = receiveWritable(1); // input 1 = right channel if (usb_audio_transmit_setting == 0) { if (left) release(left); if (right) release(right); if (left_1st) { release(left_1st); left_1st = NULL; } if (left_2nd) { release(left_2nd); left_2nd = NULL; } if (right_1st) { release(right_1st); right_1st = NULL; } if (right_2nd) { release(right_2nd); right_2nd = NULL; } offset_1st = 0; return; } if (left == NULL) { left = allocate(); if (left == NULL) { if (right) release(right); return; } memset(left->data, 0, sizeof(left->data)); } if (right == NULL) { right = allocate(); if (right == NULL) { release(left); return; } memset(right->data, 0, sizeof(right->data)); } __disable_irq(); if (left_1st == NULL) { left_1st = left; right_1st = right; offset_1st = 0; } else if (left_2nd == NULL) { left_2nd = left; right_2nd = right; } else { // buffer overrun - PC is consuming too slowly audio_block_t *discard1 = left_1st; left_1st = left_2nd; left_2nd = left; audio_block_t *discard2 = right_1st; right_1st = right_2nd; right_2nd = right; offset_1st = 0; // TODO: discard part of this data? //serial_print("*"); release(discard1); release(discard2); } __enable_irq(); } // Called from the USB interrupt when ready to transmit another // isochronous packet. If we place data into the transmit buffer, // the return is the number of bytes. Otherwise, return 0 means // no data to transmit unsigned int usb_audio_transmit_callback(void) { static uint32_t count=5; uint32_t avail, num, target, offset, len=0; audio_block_t *left, *right; if (++count < 9) { // TODO: dynamic adjust to match USB rate target = 44; } else { count = 0; target = 45; } while (len < target) { num = target - len; left = AudioOutputUSB::left_1st; if (left == NULL) { // buffer underrun - PC is consuming too quickly memset(usb_audio_transmit_buffer + len, 0, num * 4); //serial_print("%"); break; } right = AudioOutputUSB::right_1st; offset = AudioOutputUSB::offset_1st; avail = AUDIO_BLOCK_SAMPLES - offset; if (num > avail) num = avail; copy_from_buffers((uint32_t *)usb_audio_transmit_buffer + len, left->data + offset, right->data + offset, num); len += num; offset += num; if (offset >= AUDIO_BLOCK_SAMPLES) { AudioStream::release(left); AudioStream::release(right); AudioOutputUSB::left_1st = AudioOutputUSB::left_2nd; AudioOutputUSB::left_2nd = NULL; AudioOutputUSB::right_1st = AudioOutputUSB::right_2nd; AudioOutputUSB::right_2nd = NULL; AudioOutputUSB::offset_1st = 0; } else { AudioOutputUSB::offset_1st = offset; } } return target * 4; } struct setup_struct { union { struct { uint8_t bmRequestType; uint8_t bRequest; union { struct { uint8_t bChannel; // 0=main, 1=left, 2=right uint8_t bCS; // Control Selector }; uint16_t wValue; }; union { struct { uint8_t bIfEp; // type of entity uint8_t bEntityId; // UnitID, TerminalID, etc. }; uint16_t wIndex; }; uint16_t wLength; }; }; }; int usb_audio_get_feature(void *stp, uint8_t *data, uint32_t *datalen) { struct setup_struct setup = *((struct setup_struct *)stp); if (setup.bmRequestType==0xA1) { // should check bRequest, bChannel, and UnitID if (setup.bCS==0x01) { // mute data[0] = AudioInputUSB::features.mute; // 1=mute, 0=unmute *datalen = 1; return 1; } else if (setup.bCS==0x02) { // volume if (setup.bRequest==0x81) { // GET_CURR data[0] = AudioInputUSB::features.volume & 0xFF; data[1] = (AudioInputUSB::features.volume>>8) & 0xFF; } else if (setup.bRequest==0x82) { // GET_MIN //serial_print("vol get_min\n"); data[0] = 0; // min level is 0 data[1] = 0; } else if (setup.bRequest==0x83) { // GET_MAX data[0] = FEATURE_MAX_VOLUME & 0xFF; // max level, for range of 0 to MAX data[1] = (FEATURE_MAX_VOLUME>>8) & 0x0F; } else if (setup.bRequest==0x84) { // GET_RES data[0] = 1; // increment vol by by 1 data[1] = 0; } else { // pass over SET_MEM, etc. return 0; } *datalen = 2; return 1; } } return 0; } int usb_audio_set_feature(void *stp, uint8_t *buf) { struct setup_struct setup = *((struct setup_struct *)stp); if (setup.bmRequestType==0x21) { // should check bRequest, bChannel and UnitID if (setup.bCS==0x01) { // mute if (setup.bRequest==0x01) { // SET_CUR AudioInputUSB::features.mute = buf[0]; // 1=mute,0=unmute AudioInputUSB::features.change = 1; return 1; } } else if (setup.bCS==0x02) { // volume if (setup.bRequest==0x01) { // SET_CUR AudioInputUSB::features.volume = buf[0] + (buf[1]<<8); AudioInputUSB::features.change = 1; return 1; } } } return 0; } #endif // F_CPU #endif // AUDIO_INTERFACE